

Data & Analytics Framework (DAF) - Developer Documentation

Note

This documentation refers to the Alpha version of the DAF (released in October 2017) and it is daily updated and improved.
For comments and enhancement requests about the documentation please open an issue on GitHub [https://github.com/italia/daf-docs].

The Data & Analytics Framework [https://pianotriennale-ict.readthedocs.io/en/latest/doc/09_data-analytics-framework.html] (DAF, in short) is an open source project
developed in the context of the activities planned by the
Italian Three-Year Plan for ICT in Public Administration 2017 - 2019 [https://pianotriennale-ict.readthedocs.io/en/latest/],
approved by the Italian Government in 2017.

The DAF project is an attempt to establish a central Chief Data Officer (CDO) for the Government and Public Administration. Its main goal is to promote data exchange among Italian Public Administrations (PAs), to support the diffusion of open data, and to enable data-driven policies. The framework is composed by three building blocks:

	A Big Data Platform, to store in a unique repository the data of the PAs, implementing ingestion procedures to promote standardization and therefore interoperability among them. It exposes functionalities common to the Hadoop ecosystem, a set of (micro) services designed to improve data governance and a number of end-user tools that have been integrated with them.

	A Team of Data Experts (Data Scientists and Data Engineers), able to manage and evolve the platform and to provide support to PA on their analytics and data management activities in a consultancy fashion.

	A Regulatory Framework, that institutionalizes this activity at government level, and gives the proper mandate to the PA that will manage the DAF, in compliance with privacy policy.

This documentation is focused on the Big Data Platform, and we’ll refer to it as DAF for the sake of simplicity.

The Italian instance of the DAF is developed and maintained by the DAF Team [https://teamdigitale.governo.it/it/projects/daf.htm] (part of the Digital Transformation Team of the Italian Government), composed by data scientists and data engineers, which uses and evolves the framework: to analyze data, to create machine learning models and to build data applications/visualization products.

The DAF is designed to be easily re-usable in other countries and other application domains. It exposes the following data management and analytics functionalities:

	a Public Dataportal, a Web user interface providing:

	a catalog of open-data datasets based on CKAN [https://ckan.org];

	a content management system for data stories, which are a kind of blog post that integrates interactive charts (made using the DAF) with a narrative description of the analysis made;

	community tools to collaborate and learn how to use the platform;

	a Private Dataportal, a web application with the following features:

	a catalog of all datasets the user can access;

	an ingestion form to govern (insert, edit, delete) datasets information and setup ingestion procedures;

	data visualization and dashboard tools;

	a data science notebook;

	a Hadoop Cluster with typical applications to centralize and store, manipulate and standardize and re-distribute data and insights;

	a Multi-tenant architecture, based on Kerberos and LDAP.

The DAF is under development. This is a snapshot of the roadmap:

	By October 2017: Alpha release.

	By December 2017: Alpha 2 release.

	By January 2018: Alpha 3 release.

All contributions are welcome!

Contents

	 Overview
	Dataset concept

	Interoperability, Standardization and Semantic

	End-user features: Dataportal & API

	How DAF helps Open Data

	 Data Management
	Dataset: a deep dive

	Metadata, MetaCatalog & Catalog Manager

	Conventions & Ingestion pipeline

	Storage engines

	Security & Permission

	 Architecture
	 Logical Architecture

	 Security & Privacy issues

	 Installation
	 Local Installation

	 CatalogManager

	 IngestionManager

	 SecurityManager

	 DatasetManager

	 StorageManager

	 FrontendManager

	 Dataportal-public

	 Dataportal-private

	 Semantics

	 FreeIpa Docker

	 LDAP Docker

	 CKAN Docker

	 Superset Docker

	 Metabase Docker

	 JupyterHub Docker

Overview

The DAF is an open source project meant to manage the data of a country’s Public Administration.

Consequently, it is designed to:

	be highly scalable and configurable;

	promote data and knowledge sharing across several organizations;

	promote diffusion of open-data and insights of public interest;

	manage privacy and security issues;

	manage both batch and streaming ingestion and e-gestion processes.

The DAF is intended to support Public Administrations in developing:

	data-driven policies;

	data applications to improve public services and internal processes;

	innovative non-critical services for citizens and businesses.

Other users of the DAF are:

	data journalists looking for information to support their journalistic theses;

	citizens looking for information regarding the Public Administration;

	community of hackers, developers, and companies that use the tools to create value-added applications and services;

	the world of research and innovation. Thanks to the DAF, it is possible to promote initiatives to involve the world of research and innovation on issues of public interest.

The DAF is based on a security system, access management and data separation that allows you to manage data access permissions. In this way, all DAF features will be exposed to all types of users mentioned above. Users will only have access to the data for which the user profile they belong to has been granted access rights.

The following image provides an architectural snapshot of the DAF architecture:

[image: ../_images/architecture.jpg]
In a few words, the DAF platform integrates:

	front-end applications (dataportal-public and dataportal-private);

	front-end open source platforms, developed by third-parties (e.g. Metabase, Superset, Jupyter, CKAN);

	back-end open source big data platforms and technologies (e.g. Hadoop ecosystem, Livy, Nifi, etc.);

	microservices to manage all underlying DAF mechanisms (e.g. Catalog Manager, Ingestion Manager, etc.).

Everything is deployed on a Kubernetes cluster and relies on a Cloudera cluster.

	Overview

	Dataset concept

	Interoperability, Standardization and Semantic

	End-user features: Dataportal & API

	How DAF helps Open Data

Dataset Concept

The main aim of DAF is to provide a framework to manage data, regardless on their dimension and nature (from small vocabulary tables to big unstructured data). That’s why we designed the DAF around an abstraction of the concept of dataset: potentially interconnected logical entities, made of metadata, data, storage options and “interactivity” capabilities. We tried to shape it to be generic enough to model both batch and streaming, structured, semi-structured and unstructured content.

Dataset lifecycle

Datasets follow a standard life cycle path, regardless on their nature and typology.

	Dataset entity creation: a dataset entity is created via a metadata management form, where the user specifies information about the dataset (following the required items of the DCATAP_IT standard), its data structure, properties and annotations of its fields/attributes, as well as operational information to govern the management of dataset in the platform (where to store the dataset, where to be listening for new data coming, who can have access to it, etc.).

	Ingestion: after the dataset entity has been created, a microservice activates an Apache NiFi pipeline that is listening for new data to ingest.DAF is currently ready to ingest data coming from SFTP (default option for batch data), pull and push from an external webservice.

	Transformation and enrichment pipelines: before being stored into the appropriate storage engine, the data goes through several pipelines that add information to the incoming data. We are currently developing the following two pipelines:

	Normalization pipeline, to apply DAF internal conventions to raw incoming data, such as format (UTF-8), management of null entries, refactoring of codified fields like date and URL, and so on.

	Standardization pipeline, to make sure that fields marked as bound to a controlled vocabulary (via semantic annotation made during the dataset entity creation phase) are actually using the terms present in the vocabulary.

All pipelines are thought to enrich the incoming raw data, so not to modify the original content: the steps described above add new fields with the result of the transformation applied and, when applicable, an information about the “goodness” of the transformation applied.

	Storage: after the dataset is ready, it will be persisted using one or more storage mechanism indicated during the dataset entity creation phase. We are currently working to support parquet files in HDFS, HBase, Kudu, MongoDB and ElasticSearch.

	E-gestion: data are consumed by the end user via API (implemented within the dataset manager microservice), Spark (accessible via Livy and a Jupyter notebook) and data analytics & visualization application (currently we integrated with Metabase and Superset).

Types of datasets

From a logical point of view, the DAF manages two types of datasets:

	Standard datasets describe phenomena that are
common nationwide. These datasets are thus defined as datasets with national relevance and supported by the highest level of information/metadata. They follow a detailed set of rules and standardization mechanisms that make them homogeneous across data sources (there may be multiple data sources describing the same phenomena, e.g., the bike sharing phenomena can be analyzed using data coming from Milan, Turin, Rome, etc…).

	Ordinary datasets have “owner” relevance, in the sense that they are defined and generated by a specific owner for its specific usage. They do not obey to a standard nationwide schema (data model), but the owner needs to specify metadata and information about the dataset before ingesting the data into the Big Data Platform of the DAF.

Interoperability, Standardization and Semantics

One of the biggest issues DAF wants to solve is interoperability/integrability between datasets. This is achieved by a combined use of a deep metadata architecture together with semantic tagging, controlled vocabularies and ingestion transformation procedures.
At the ingestion time, every dataset get transformed and enriched so that the output can be easily “linked” to other datasets.

At the moment, we are working to cover the following standardization use cases:

	Data format & conventions: incoming data are treated to follow coherent internal conventions, e.g. date, URL format, address format, text reformatted to account for normalization vocabularies, etc.

	Data enrichment: adding new information to the incoming dataset in order to improve the informative value of the dataset and ensure internal interoperability, e.g. terms standardization using controlled vocabularies, addresses components, global unique id for rows, etc.

Metadata, Semantic Tagging and Controlled Vocabularies

Datasets are associated to concepts and attributes described into domain ontologies via semantic tagging (done during the ingestion step). This mechanism consists in linking columns/features of the datasets to corresponding ontologies. This is done to specify the concepts and the attributes the datasets contain.

For example, let’s consider a dataset containing the list of Italian companies and their headquarters. Here all the columns related to personal information (e.g. name, year of establishment, etc.) will be tagged with the corresponding semantic tag contained in the “Organizations ontology”.
Furthermore, the information related to the address of the headquarter will be tagged with the semantic tag of the address of from the “Places Ontology”, and also associated to the concept of “company”.
In this way the address is the one of a company (as opposed, for example, to the address of a citizen).
Finally, by having linked the address to the related concepts contained in the “Places ontology”, we will be able to use all info contained in the mentioned ontology, included the existence of controlled vocabularies for the properties used.

The advantage of using ontologies and linking them to the ingested dataset are the following:

	easier establishment and implementation of a standard dataset at national level;

	possibility to logically link datasets based on their content and concepts. This feature is specifically useful in exploratory analysis and model munging;

	usage of the controlled vocabulary information so to provide standardization procedures to ensure the correct usage of the vocabulary in the dataset, and therefore, improve interoperability;

	possibility to build meaningful and rich knowledge graphs to be exploited for further analysis.

End-user features: Dataportal & API

DAF offers functionalities to its users (policy makers, analysts, data scientists, civic hackers, data journalists and informed citizens) via a web application (that we call Dataportal) and an ecosystem of APIs to access the data and other core functionalities. All DAF users will be exposed to almost the same functionalities, but they will be able to access only the datasets they have been granted access to.

Dataportal

The Dataportal is the DAF user interface, a place where users can have access to most of DAF functionalities and contents, based on their role and access grants. It is a web applications offering a public area where users can have access to contents that can be released publicly, and a private area where authenticated users can manage and use all data they have been granted access to based on their role and organization, and functionalities like data visualization, business intelligence and data science.

Here are some basic content and features accessed and managed via the dataportal:

	Dataset metacatalog: a catalog where to search for datasets, their info according to DCAPAP_IT profile, correlated datasets, related information and datastories made by using the dataset, the list of API with which using the dataset, and other operational info useful to use the dataset with the integrated tools.

	Data stories: blog posts that integrate data visualizations and scripts to tell the whys and the results of a data analysis. Data stories are design to stimulate discussion around an data related themes, and allows the community to comment an propose further analysis.

	Data applications: software with a user interfaces that expose functionalities based on data and models trained on them. Data applications can be done by the DAF team, public administration or can be proposed by the community, and will be organized in a related section of the dataportal.

	News & blog: blog post containing news related to the data world, together with how-to and tutorial on how to use the DAF and dataportal.

	Data visualization & Business Intelligence: we integrated two open source tools, Metabase and Superset, where user can explore data managed by DAF and create graphs and dashboards.

	Data science: a JupyterHub notebook has been integrated and connected to the Hadoop cluster to allow for data manipulation, analysis and data science. Users can take advantage of the capability of Apache Spark and its libraries to run SQL queries on top of Hadoop, integrate different datasets and training machine learning models using MLlib library.

API

The DAF exposes automatically an API to interact with datasets. Users can use standardized interfaces to access the datasets to:

	get statistical and metadata info;

	download the dataset (up to a certain limits);

	run SQL like queries on datasets.

The use of APIs will allow users to build their applications easily and with the guarantee to access the most updated data available.

Open Data in SaaS

The DAF manages the national open data catalog via its dataportal, by centrally integrating all metadata information of the open dataset provided by the Public Administration, and rearrange them using the DCATAP_IT profile. Furthermore, it also offers a Open Data as a Service tool: Public Administrations may choose to manage their open data using DAF functionalities and not having to take care of yet another open data catalog by themselves. They will have an always updated platform, and can provide to their users all current and new functionalities developed centrally for the dataportal.

The advantages of using DAF to manage Open Data can be summarized as follows:

	Open data managed directly via DAF will be DCATAP_IT compliant by design, and will follow its evolution once and for every PAs.

	Open Data that can be derived directly from PAs datasets managed into DAF will be automatically created and updated as new information is ingested.

	The usage of semantic tagging will allow for the creation of RDF and linked open data, exposed also via SPARQL endpoints.

	Open Data Website as a Service: the PAs can choose to use use DAF to manage their open data website with a simple console that will allow them to customize the look and feel, and have a new website on the fly.

Data Management

This section is about dataset concept and management in DAF. You’ll find info about the type of datasets managed, the logics behind datasets in DAF, ingestion pipelines and conventions used and much more.

	Dataset: a deep dive
	Ordinary Dataset

	Standard Datasets

	Raw Open Data

	Metadata, MetaCatalog & Catalog Manager
	Dataset level metadata (DCATAP_IT)

	Data structure level metadata

	Conventions & Ingestion pipeline
	DAF Conventions List

	Ingestion pipeline steps

	Final Dataset Structure

	Storage engines

	Security & Permission

More on Datasets: A Deep dive

The notion of datasets is the main concept around which DAF architecture has been build. In fact, DAF provides advanced features for data governance, analysis and interoperability designed to solve typical problems faced by the public administrations and large companies.
In this section we expand on what has been presented in the Overview section, to better describe how datasets are managed in DAF. What will follow is common to all datasets managed in DAF, except for some aspects related to data streams, that will be covered into an ad-hoc section.

	Formally, we define a dataset

	as a combination of data and metadata.

	Data is the actual content of the dataset, and can be organized into tabular, json and text formats.

	Metadata are all the information about the dataset that describe and give context to its contect. Metadata will be treated in details in an appropriate section.

Ordinary Dataset

Every datasets that are ingested by an organization (PA) are treated as ordinary dataset. An ordinary dataset does not have a pre-defined structure it needs to follow, it is ingested as it comes, besides the standardization, normalization and enrichment processes defined in the ingestion pipeline.

It will have the following data structure:

	standardized & normalized original columns

	raw original columns

	enrichment columns, among which (most of them will depend on the content of the original columns):

	__ROWID: global unique row id

	__dtcreated: date and time when the info has been added

	__dtupdated: date and time when the info has been updated

Ordinary datasets can be created from data coming from outside DAF, or by transformations applied to already existing DAF datasets. For example, a public administration can decide to create an open data version of a private dataset, by indicating the columns that can be released publicly and an optional aggregation policy. In this way, everytime the private dataset receives updates, they will be automatically be reflected into its open data version (that will be another dataset in the DAF world).

Storage & other conventions

Ordinary datasets are stored by default in HDFS using the Parquet data format and exposed as Hive and Impala tables. Data will be physically stored in the following HDFS meta-directory:

/daf/ordinary/{organization}/{domain}_{subdomain}/{dataset name}/{version}

where:

	{organization} is the name of the organization owner of the dataset, e.g. ‘Comune_Milano’

	{domain} and {subdomain} are the code of the categories used to group the data. They are mutuated from DCATAP_IT.

	{dataset name} is the unique identifier for the dataset

	{version} is the name of the version of the dataset that is stored into that folder. It can typically be landing for the raw data ingested, final for the output of the ingestion pipeline. The final version will be the one exposed via API by DAF.

As convention, DAF manages a system of logical uri by which a dataset can be uniquely identified. In the case of ordinary dataset, it is built as follows:

daf://dataset/ordinary/{organization}/{domain}/{subdomain}/{dataset name}

Standard Datasets

Standard Datasets are those datasets that describe concepts and phenomena valid nationwide, following a strict data structure and semantics rules. Standard datasets are said to follow ‘standards’ that are defined for all PAs, so to guarantee that a given phenomena can be described in the same way and following the same conventions nationwide.
Data will be physically stored in the following HDFS meta-directory:

They will typically have the following data structure:

	standardized and normalized mandatory columns, grouped under the mand.{colname} struct field

	standardized and normalized optional columns, grouped under the opt.{colname} struct field

	enrichment columns from the ingestion procedures, grouped under the enr.{colname} struct field

	operational enrichment columns, with info needed for internal DAF operations and grouped under the ops.{colname} struct fields. These fields are:

	__dtcreated: date time when the info has been ingested into the standard dataset

	__dtupdated: date time when the info has been updated

	__srcorg: the code name of the organization that originated the data (e.g. ‘Comune_Milano’)

	__dsname: the unique name of the ordinary dataset from which the data come from.

Dataset standards can be created directly by a PA, if it is the only contributor to the national standard, or by 2 or more PAs in cases when every PA contribute to the national standard with the piece of info it manages. In the latter case, the standard dataset is created starting from 2 or more ordinary datasets, and in this case can be considered a ‘derived’ dataset. In this case, the ordinary dataset will specify that they contribute to a standard and the mapping model needed to map the ordinary dataset into the standard one.

Storage & other conventions

Standard datasets are stored by default in HDFS in parquet format and exposed as Hive and Impala tables. Data will be physically stored in the following HDFS directory:

/daf/standard/{domain}__{subdomain}/{dataset name}/{version}

If not specified differently, it is partitioned based on __srcorg and, in case the dataset is of type ‘last update’ (meaning it is composed by append of snapshot updates, as opposed to ‘time series’ type), it is also partitioned by __dtcreated

Raw Open Data

Finally, we collect and store raw open data coming from the national catalog. They are automatically metadated based on the info available (in ‘at best’ fashion), and stored in HDFS in the following path:

/daf/opendata/{organization}/{dataset name}

Once ingested, they can be used with all other tools managed by DAF.

Dataset MetaCatalog: a deep dive into metadata for datasets

The MetaCatalog, managed by the Catalog Manager microservice (see Architecture Section), are detailed info describing a dataset. They are data about data, therefore metadata. Metadata are heavily used in DAF to help discoverability of dataset, allows for multi-system interoperability, perform internal automatic operations. According to their function, metadata are divided into 3 macro categories: dataset level (DCATAPIT), data structure level, operational level metadata.

Dataset level metadata (DCATAP_IT)

These metadata are meant to describe the dataset’s info such as its name, owner, category, etc. DAF implemented the mandatory fields of the DCATAP_IT profile, according to AGID regulations. Following a subset of the DCATAPIT metadata (see the link below for a complete list of required info)

	name: dataset unique name

	title: title of the dataset

	identifier: dataset unique identifier

	alternate_identifier:…

	author: …

	theme: thematic domain that characterize the dataset

	license_id:…

	resources: a list of resources from where to download the dataset and other related data. Dataset managed in DAF will have here API endpoints to download and access the dataset.

	license_title:

	frequency:

	publisher_name: name of the organization that publish the dataset

	publisher_identifier….

	organization:….

	owner_name: name of the organization that owns the dataset

	holder_name:…

	holder_identifier:…

	tags: tagging system connected to vocabulary.

	relationshiops_as_subject:…

	notes: additional information

	modified: date of last modification to the dataset

Data structure level metadata

Data scructure metadata contains information about the internal structure of a dataset, at column or field level. It manages info about format, content, semantics that are contained into a single column of a tabular dataset, for example. Here we store two datastructure metadata: an avro schema of the dataset, and a ‘flatschema’ where we store additional information than the one provided by the avro schema, specifically thought to enrich the information expressed about the content and the semantics of the columns. Below, you’ll find the list of info contained in the ‘flatschema’ part, we’ll skip the avro schema part as are using the standard avro schema definition.

	name: name of the field/column. This name needs to obey to formatting rules that are necessary for it to be used as the name of a column in a database, therefore it may not be human readable.

	type: data format of the column, such as ‘string’.

	metadata.title: human readable name for the column.

	metadata.desc: description of the content of the column.

	metadata.field_type: it tells if the column is a dimension, a metric (numeric attribute) or a descriptive attribute.

	metadata.required: it tells if the field is mandatory or optional.

	metadata.uniq_dim: checked if the column is part of the list of dimensions that make the row unique, such that there will not be two rows with the same values for the columns checked as uniq_dim.

	metadata.is_createdate: boolean, checked if the column contains the date when the row was created.

	metadata.is_updatedate: boolean, checked if the column contains the date when the row was updated.

	metadata.cat: category that can better represent the content of the field. This is controlled by a vocabulary.

	metadata.tag: list of tags that can better represent the content of the field. All tags are saved into an evolving vocabulary.

	metadata.constr: a list of objects (made by type and param arguments) to set contraints on the content of the field.

	metadata.semantics: an object containing semantic info to link hte column to related ontology and controlled vocabulary, if any. In particular:

	id: this is the semantic tag that links the column with a given attribute of a concept described into an ontology.

	context: this info gives context info on the semantic tag.

	rdf_subject: it is used to give a better context to the info contained in the column. Technically, it is a tag for a concept described into an ontology. In most cases, it can be seen as the subject that makes an action, derived from the id attribute.

	rdf_predicate: the action that the subject perform on the content of the column.

	rdf_object: the target of the action performed by the subject.

	uri_voc: It is a unique identifier for the vocabulary. It matches with the dsname field of the dataset in DAF.

	uri_property: it is the uri associated to the element epressed in the column. It is used, among other things, to link the column of the dataset to the column of the vocabulary which controls it, if any.

	property_hierarchy: it is of type array, and it gives info about the hierarchy, if any, to which the property/column belongs to.

	metadata.personal: this objects contains info whether the data are of personal kind. In particular:

	ispersonal: boolean, to tell whether or not the info contained in the column is a personaltype of information.

	cat: category of personal information

	metadata.format_std: this is an object that gives info about a format standard the data follows when ingested in DAF. It is useful to help the system identify such standard and transform into the DAF choosen standard. The object has the following two attributes:

	name: name of the format standard, e.g. date, credit card, address, etc.

	param: depending on the type of format, it is a string giving the exact formatting order and composition of the information contained. E.g. for the date example, it may be ‘YY/MM/DD’. This will help the normalization procedure to refactor in the right order and format the information, such to follow the DAF internal conventions.

	metadata.field: it has info on indexing in SearchEngine and profiling of the field, plus other Kylo specific information on standard and validation.

	is_index: it tells to create an index based on this field in the SearchEngine.

	is_profile: it tells to create a profile for the field that will be displayed as result of the SearchEngine.

	validation: contains info on the validation rules to be used for the field.

	standardization: contains info on the standardization procedure to be performed on the field.

Operational level metadata

These metadata are used to manage the dataset within DAF logics and conventions, from input sources to storage options to ingesiton pipelines mechanics.

	inactive: optional boolean, true if the dataset entry has been created as inactive (that is, no effects on the system has been created, e.g. no ingestion pipeline has been started for the dataset yet).

	theme:..

	subtheme:…

	logical_uri:

	physical_uri:..

	is_std:..

	group_own:…

	group_access: (name, role)

	std_schema:…

	georef:..

	input_src: It is an object containing information about input feeds, which can be of the following types:

	sftp: it contains info on how to access the sftp plus specific info on the feed characteristics (i.e. data format and related options)
* name
* url
* username
* password
* param: this is a json string containing info related to the specific input type not already codified. An important info contained here is the type of file to be ingested (e.g. csv, json, xml) and option related to the file format.

	srv_pull: , srv_push, daf_dataset. Each of them,

	ingestion_pipeline:..

	storage_info: (hdfs, kudu, hbase, mongo, textdb)

	dataset_proc: It has info about how to process and store internally the dataset. Such info includes partitioning, merge strategy, etc.

	read_type: update vs timeseries

	dataset_type: batch vs stream

	partitions: It contains info on how the dataset is partitioned in DAF.

	name: name of the partition, given by the user.

	field: name of the field to be used for partitioning. It must correspond to one of the ‘name’ of the dataschema.

	formula: the formula to be applied to the field to get the partition value.

	merge_strategy: It tells how new data should be ingested into the existing dataset. User must choose among the following options. ‘SYNC’ to replace the existing content with the new one; ‘MERGE’ to append the data into the target partitions; ‘DEDUPE_AND_MERGE’ to insert into the target partition but ensure no duplicate rows are remaining; ‘PK_MERGE’ to insert or update existing rows matching the same primary key; ‘ROLLING_SYNC’ to overwrite target partitions only when present in source.

	opendata: it is used to tell the system to create an open data version of the dataset. If valued, it will create a new derived dataset entry, precompiled with info taken from the original dataset, and put into ‘inactive’ state so it can be valued and confirmed by the user. It is an object with the following info:
* create_opendata: boolean, valued as true if user wants to create a derived open data dataset.
* sql: SQL query with the final data structure of the open data dataset.

	service_layer: it is used to put the dataset (or its transformation) into the service layer (Kudu?)
* transfer_mode: it tells whether the dataset will be put as is in the service layer or it needs to be transformed via derived dataset. It takes two values: direct, derived.
* sql: optional, used in case transfer_mode is valued at derived and user wants to specify ex-ante the transformation query.

DAF Dataset Conventions & Ingestion Pipeline

The logic behind DAF highly relies on internal conventions when it comes to dataset ingestion, e-gestion and usage. These conventions aims to improve the interoperability between datasets and to make possible the enrichment of the original data with other useful info DAF already knows.
Below, you find a list of conventions used, the ingestion steps, and an example that shows how these conventions are used in practice.

DAF Conventions List

	Data format (Normalization): all data is transformed into UFT-8 format

	Data conventions (Normalization): we make use of the following internal conventions

	null value are saved as NULL. Therefore, all other external conventions used in the raw incoming data (i.e. empty string) are transformed to NULL

	date are transformed using the ISO8601 in YYYY-MM-DD hh:mm:ss

	url are formatted as following http[s]://www.yoururl.com

	normalization vocabularies are used to normalize special cases that will be continuously added to ad-hoc vocabularies, such as accented letters, specific names, etc. The terms in the vocabularies are substituted with the appropriate translation, and this will be done both for all dataset (general normalization vocabularies), or for owner/dataset (source normalization vocabularies and dataset normalization vocabularies).

	address written in a single cell, is interpreted (when possible) and rearranged as follows: {address type} {address name}, {civic number}, {zip code} {City} ({Provincia/State}), Country. The system recognize it as address, via semantic tag.

	new columns from enrichment are named as following: __{enrichment type}[_{column name}], where text in {} is mandatory, and text in [] is optional and depends on the type of transformation (some are not connected to an existing column)

	a unique row id (Enrichment) is added via a new column called __ROWID to ensure global uniqueness of the id within DAF. It is made as following: {dataset name space}_{row hash} [TBD]

	a generated datetime (Enrichment) is added with the timestamp of the ingestion in a column called __dtcreated

	a updated datetime (Enrichment) is added with the timestamp of the last update for that row in a column called __dtupdate

	a controlled vocabulary standardization (Standardization) columns is added every time there is a feature/column that is tagged to have a controlled vocabulary associated (the tagging happens in the Catalog Manager, at metadata level). In this case, a procedure is activated to check whether the values contained in the column obey to the vocabulary. This will result in the addition of two columns: __std_{col name} will have the value of the original column in case they are found in the vocabulary, or the closest value (according to some distance metrics like the Levenshtein distance) in case the value is not exactly found; __stdtat_{col name} containing the distance between the original value and the closest one found in the vocabulary. Be aware that the final dataset will not contain the __std_{col name} column, as its value will be put in a column named with the original name {col name}. The __std_{col name} column is used in intermediate steps of the ingestion process.

	a unique identifier / code (Enrichment) for the standardized columns, in case the controlled vocabulary has a code associated to the standard label. This column will be called __stdcode_{column name}

	address components (Enrichment): every time there is a column/field tagged as address, this enrichment step will add the following columns inferred from it:

	__address@placetype_{column name}: it contains the type of address (i.e. via, piazza, viale, ecc.) contained in the address from the column {column name}

	__address@placename_{column name}: it contains the name of the address (i.e. ‘del Corso’) contained in the address from the column {column name}

	__address@placecode_{column name}: it contains the code (unique identifier) of the address from its controlled vocabulary.

	__address@cityname_{column name}: it contains the name of the city of the address from its controlled vocabulary.

	__address@citycode_{column name}: it contains the code (unique identifier) of the city from its controlled vocabulary.

	__address@provname_{column name}: it contains the name of the ‘provincia’ or state of the address from its controlled vocabulary.

	__address@provcode_{column name}: it contains the code (unique identifier) of the ‘provincia’ or state from its controlled vocabulary.

	__address@countryname_{column name}: it contains the name of the country of the address from its controlled vocabulary.

	__address@countrycode_{column name}: it contains the code (unique identifier) of the country from its controlled vocabulary.

	__address@lat_{column name}: it contains the latitude of the address.

	__address@lon_{column name}: it contains the longitude of the address.

Ingestion pipeline steps

The following steps describe the ingestion pipeline applying the above conventions to the incoming new data.

	New data are captured from the incoming source and stored into a landing area into DAF HDFS.

	Normalization procedures are applied to the incoming data so to apply DAF conventions. The result will be a dataset with new features/columns added named __norm_{col name}, containing the result of the normalization applied to all features/columns of the original dataset.

	Standardization procedures are applied to the normalized columns of the previous step. The result will be a dataset generated a the previous step, with the addition of the standardized columns (only when the standardization can be applied, so the number of added columns may be less then the total number of columns in the original dataset (step 1.) named __std_{col name}.

	Enrichment procedures are applied to the dataset at step 3, resulting in a new dataset build starting from the one generated in step 3 and adding enrichment columns named as follows __{enrichment tuype}[_{col name}].

	Finalization procedure takes as input the dataset in step 4 and rearrange its columns as follows: it contains the normalized and standardized columns, named as the original columns in the incoming dataset (step 1); the original raw data columns named __raw_{col name}, the list of enrichment columns from step 4.

Final Dataset Structure

Based on the conventions and ingestion pipelines described above, a final dataset will have the following structure:

	`ROWID` column, with a unique identifier for the row.

	List of dataset columns: the list of columns of the original raw dataset ingested, at which all the procedures described above have been applied. These columns are named with the original column names provided at the ingestion time.

	List of original raw columns: this part reproduce the original data as provided for the ingestion. These columns will be named as follows: __raw_{col name}.

	List of enrichment columns: those are columns that add additional information to the dataset, extracted at ingestion time. They will be named according to the following convention: __{enrichment type}[_{col name}].

As an example, consider the following dataset to be ingested into DAF.

Step 1: Ingest raw incoming data into DAF, after creation of dataset instance in the catalog manager.

	
id

1

	
company_name

Fiat

	
industry_type

Automobili

	
address

via Gabriele Chiabrera, 20, 10126, Torino

	
city

Torino

	
state

Italia

	
num_employees

1000

	
website

fiat.it

	
description

Fiat e’ stata fondata nella citta’ di torino

	year_foundation

	“”

Among other things, let’s suppose that the following metadata has been associated to the dataset:

	industry_type has been associated with the ATECO contolled vocabulary

	address has been linked to the semantic tag associated to address, and to data type ‘address’

	city has been linked to the semantic tag associated to the city and connected controlled vocabulary

	state has been linked to the semantic tag associated to the state and connected controlled vocabulary

	website has been associated to the data type url

Step 2: Apply normalization procedures

	id

	company_name

	industry_type

	address

	city

	state

	num_employees

	website

	description

	year_foundation

	__norm_id

	__norm_company_name

	__norm_industry_type

	__norm_address

	__norm_city

	__norm_state

	__norm_employees

	__norm_website

	__norm_description

	__norm_year_foundation

	1

	Fiat

	Automobili

	via Gabriele Chiabrera, 20, 10126, Torino

	Torino

	Italia

	1000

	fiat.it

	Fiat e’stata fondata nella citta’ di torino

	“”

	1

	Fiat

	Automobili

	via Gabriele Chiambrera, 20, 10126, Torino

	Torino

	Italia

	1000

	http://www.fiat.it

	Fiat è stata fondata nella città di Torino

	NULL

Step 3: Apply standardization procedures

	id

	company_name

	industry_type

	address

	city

	state

	num_employees

	website

	description

	year_foundation

	__norm_id

	__norm_company_name

	__norm_industry_type

	__norm_address

	__norm_city

	__norm_state

	__norm_employees

	__norm_website

	__norm_description

	__norm_year_foundation

	__std_industry_type

	__stdstat_industry_type

	__std_city

	__stdstat_city

	__std_state

	__stdstat_state

	1

	Fiat

	Automobili

	via Gabriele Chiabrera, 20, 10126, Torino

	Torino

	Italia

	1000

	fiat.it

	Fiat e’stata fondata nella citta’ di torino

	“”

	1

	Fiat

	Automobili

	via Gabriele Chiambrera, 20, 10126, Torino

	Torino

	Italai

	1000

	http://www.fiat.it

	Fiat è stata fondata nella città di Torino

	NULL

	Fabbricazione di Autoveicoli

	45

	Torino

	0

	Italia

	1

Step 4: Apply enrichment procedures

	id

	company_name

	industry_type

	address

	city

	state

	num_employees

	website

	description

	year_foundation

	__norm_id

	__norm_company_name

	__norm_industry_type

	__norm_address

	__norm_city

	__norm_state

	__norm_employees

	__norm_website

	__norm_description

	__norm_year_foundation

	__std_industry_type

	__stdstat_industry_type

	__std_city

	__stdstat_city

	__std_state

	__stdstat_state

	__ROWID

	__dtcreated

	__dtupdated

	__stdcode_industry_type

	__address@placetype_address

	__address@placename_address

	__address@placenamecode_address

	__address@placenum_address

	__address@zipcode_address

	__address@cityname_address

	__address@citycode_address

	__address@lat_address

	__address@lon_address

	1

	Fiat

	Automobili

	via Gabriele Chiabrera, 20, 10126, Torino

	torino

	Italai

	1000

	fiat.it

	Fiat e’stata fondata nella citta’ di torino

	“”

	1

	Fiat

	Automobili

	via Gabriele Chiambrera, 20, 10126, Torino

	Torino

	Italai

	1000

	http://www.fiat.it

	Fiat è stata fondata nella città di Torino

	NULL

	Fabbricazione di Autoveicoli

	45

	Torinoi

	0

	Italia

	1

	574832sdfd958fds742398_1514467919

	1514467919

	1514467919

	29.10.0

	via

	via Gabriele Chiambrera

	12321213

	20

	10126

	{‘ita’: ‘Torino’}

	23423234

	45.0458

	7.6788

Step 5: Finalization

RAW DATA | FINALIZED DATA | ENRICHMENT COLUMNS |

	__raw_id

	__raw_company_name

	__raw_industry_type

	__raw_address

	raw_city

	__raw_state

	__raw_num_employees

	__raw_website

	__raw_description

	__raw_year_foundation

	id

	company_name

	industry_type

	address

	city

	state

	employees

	website

	description

	year_foundation

	__stdstat_industry_type

	__stdstat_city

	__stdstat_state

	__ROWID

	__dtcreated

	__dtupdated

	__stdcode_industry_type

	__address@placetype_address

	__address@placename_address

	__address@placenamecode_address

	__address@placenum_address

	__address@zipcode_address

	__address@cityname_address

	__address@citycode_address

	__address@lat_address

	__address@lon_address

	1

	Fiat

	Automobili

	via Gabriele Chiabrera, 20, 10126, Torino

	torino

	Italai

	1000

	fiat.it

	Fiat e’stata fondata nella citta’ di torino

	“”

	1

	Fiat

	Fabbricazione di Autoveicoli

	via Gabriele Chiambrera, 20, 10126, Torino

	Torino

	Italia

	1000

	http://www.fiat.it

	Fiat è stata fondata nella città di Torino

	NULL

	45

	0

	1

	574832sdfd958fds742398_1514467919

	1514467919

	1514467919

	29.10.0

	via

	via Gabriele Chiambrera

	12321213

	20

	10126

	{‘ita’: ‘Torino’}

	23423234

	45.0458

	7.6788

Storage Engines

TBD

Security & Permissions

TBD

Data & Analytics Framework Architecture

[TBD]
The DAF Big Data platform is an environment offering capabilities for:

	storing and managing datasets: users can register and load datasets on the platform,
specifying the ingestion model (e.g batch, streaming), the serialization formats (e.g. Avro, Parquet),
the desired serving layers (e.g. HBase, Impala), metadata, etc;

	processing and analysing datasets: the platform supports several Hadoop-based technologies.
Users can not directly use these technologies, since they are mediated by user-friendly applications
provided by the Dataportal (e.g. Superset, Jupyter);

	managing of access rights for each dataset: the adopted security approach allows
the platform administrators to set the proper access rights for each dataset.

The DAF Big Data platform also enables redistributing datasets, developing data applications, publishing insights
by means of the above mentioned tools provided by the Dataportal: by these tools, data scientists and analysts can perform analysis on data, run statistical and machine learning models, and produce data
visualizations and reports.

For more information, continue your tour with the following sections.

	 Logical Architecture

	 Security & Privacy issues

Big Data platform Architecture

The DAF Big Data platform has been originally designed to
gather and store data coming from different Italian Public
Administrations. As a consequence, it provides efficient and easy to use
ingestion mechanisms for allowing external organisations to simply
ingest their data into the platform with minimal human intervention.

The DAF platform should not only provide support for data at rest and fast
data (streaming), but also for storing and managing collections of
unstructured data, textual documents. Besides providing those storing
capabilities, the next main goal is to provide a powerful mechanism for
data integration, i.e. a way for integrating data that traditionally
reside on separate silos. Enabling the correlation of datasets normally
residing on different systems/organizations can become a very powerful
enabling factor for discovering new insights on the data. The platform
should allow the data scientists to access its computational power for
implementing advanced analytics algorithms.

The Big Data architecture underlying the DAF is described by the following views:

	 Logical View

	 Component/microservice View

	 Deployment View

Logical View

The DAF platform is ultimately an implementation of the “data
lake [https://en.wikipedia.org/wiki/Data_lake]” concept. Assembling
a data lake involves a sequence of unavoidable steps meant to gather,
organise and publish the data in an efficient and secure way.

The most important aspect to take into account in a data lake being set
up is the data governance. Data governance means data organizations and
metadata management. Being able to catalog the datasets together with
their metadata is the prerequisite for implementing any further steps in
the data lake set up such as data ingestion/egestion and data security.

Implementing the Dataset Abstraction

The main abstraction the DAF platform is based upon is the
dataset.
From a technical point of view, a dataset is a collection of records described
by a data schema.
A dataset is identified by a logical URI and it is associated to a physical URI that identifies
the medium and location where the data is actually stored.

[image: URIs relationships]
Fig. 1 URIs relationships

A LogicalURI must be associated to one and only one PhysicalURI that
can be associated to zero or more ViewURIs. Let’s explain this with an
example.

Let’s define a LogicalURI, for example:

daf://ordinary/comune_milano/mobilita/sharing/bike

this can be bound to the following PhysicalURI

dataset:hdfs:/daf/ordinary/comune_milano/mobilita/sharing/bike

and eventually to a ViewURI like

dataset:hive://comune_milano/mobilita/sharing/bike

In other words, while a PhysicalUri represents the actual location on
the Hadoop storage behind, a ViewURI represents the fact that a
dataset can be also exposed/view through a different platform.

As an example, a Hive/Impala external table created on top of a
directory on HDFS represents a view of the same data stored in HDFS.
This approach should allow modeling the mechanism of publishing datasets
with low latency SQL engines like Impala/Presto.

All the metadata about datasets including their URIs are collected and
organised in a catalog. This catalog is an essential component of the
DAF platform: all the data ingestion steps and all the data
manipulations’ steps that we allow on the data will be driven by it.

DAF Big Data Architecture Layers

The high-level view of the architecture is pretty simple. It is based on
the following layers:

	𝜇-Service Layer: it contains all the services needed to implement
the platform functionalities. It also contains the catalog manager
𝜇-service (CatalogManager) which is
responsible to manage all the datasets metadata.

	Ingestion Layer: it is responsible for all the ingestion tasks. It
is be based on tools for data ingestion automation like
NiFi [https://nifi.apache.org/]. It’s strongly integrated with
the CatalogManager because, as already said, all the incoming data
is listed in the catalog: this implies all the ingestion supporting
tools is integrated with the CatalogManager.

	Hadoop Computational Layer: it contains all the typical
computational platforms part of the extended Hadoop stack. The most
important platform which is going to be used extensively by the
platform is Spark [http://spark.apache.org/]. The 𝜇-service (in
the 𝜇-service layer) uses the computational layer for tasks like data
access and data manipulation/transformation. The ingestion layer uses
the computational layer for implementing tasks like data
conversion/transformation.

	Hadoop Storage Layer: it contains all the storage platform provided
by Hadoop: HDFS, Kudu and HBase. As described above the physical URIs
contain the information for accessing the data as stored on those
storage platforms.

The following image summarizes the logical view of the DAF architecture:

[image: Logical View]
Fig. 2 Logical View

Component/𝜇-Service View

The main components/𝜇-services of the DAF platform are:

	CatalogManager

	IngestionManager

	StorageManager

	DatasetManager

The following image shows these components/𝜇-services and their mutual
relationships.

[image: Component View]
Fig. 3 Component View

CatalogManager

The CatalogManager is responsible for the creation, update and
deletion of datasets in DAF. Furthermore, it takes care of the metadata
information associated to a dataset.

The CatalogManager provides a common view and a common set of APIs for
operating on datasets and on all related metadata information and
schemas (see the CatalogManager API &
endpoints).

The CatalogManager is based on the services provided by the
CKAN [https://ckan.org/] service. In fact, one of the most relevant
architectural decisions is to reuse as much as possible the metadata and
catalog features provided by the CKAN service. The idea behind is
simple: treating the data managed by the DAF platform similarly to what
CKAN does with the open data. Part of the metadata are managed by the
CKAN catalog and additional metadata information are managed by the
CatalogManager.

The CatalogManager is also responsible to store all the schemas
associated to the datasets: these schemas are saved as
AVRO [https://avro.apache.org] schemas.

IngestionManager

The IngestionManager manages all the data ingestion activities
associated to datasets.

The IngestionManager collaborates with the CatalogManager to associate
the proper metadata to the ingested data.

The IngestionManager provides an API to ingest data from a datasource
into the DAF platfom (see the IngestionManager API &
endpoints). In particular, the
IngestionManager takes as input data and info needed to identify the
dataset to which the data needs to be associated with. Before actually
storing the data in DAF, the IngestionManager performs a set of
coherence checks between the metadata contained in the catalogue and the
data schema implied in the input data. There are two scenarios:

	The catalog entry for the dataset has been already set up. In this
case the IngestionManager will check if the incoming data and
schemas are congruent with what has been configured in the catalog.

	There is no catalog entry for the dataset. In this case the
IngestionManager will automatically create an entry in the catalog
checking that all the relevant information are provided during the
ingestion phase.

The IngestionManager is also responsible for scheduling the ingestion
tasks based on the information associated to the datasets. The ingestion
for static data (data at rest) is based on a pull model. The dataset
catalog entry should contain information about where and when the data
should be pulled from.

StorageManager

The StorageManager is responsible for abstracting the physical medium
where the data is actually stored (see the StorageManager API &
endpoints).

The StorageManager is based on the Spark dataset abstraction for hiding
the details of the specific storage platform. In fact, Spark provides a
very powerful mechanism for describing a dataset source regardless of
its actual physical place. We leverage this powerful mechanism for
defining the physical URIs as described before, that is:

	dataset:hdfs:// for HDFS,

	dataset:kudu:dbname:tablename for Kudu,

	dataset:hbase:dbname:tablename for Hbase.

The only restriction we have to impose for making this Spark based
mechanism working is to always have a dataset per HDFS directory.

DatasetManager

The DatasetManager manages operations several related to the dataset,
such as:

	to return the data of the dataset (or a sample of it) in a specified
format:

	to create a specific view on top of a dataset,

	to get the dataset schema in a given format (e.g. AVRO);

	to create a new dataset based on an existing one but saved into a
different storage mechanism or based on a transformation of the
existing dataset, etc.

For a list of endpoints and functionalities currently provided by the
DatasetManager see the DatasetManager API &
endpoints.

Technically speaking, the DatasetManager is responsible for all the
tasks on top of the datasets, indicated by the logical
URIs. For example tasks like format conversion, AVRO
to Parquet, dataset import/movement, from HDFS to Kudu will be managed
by this 𝜇-service.

The DatasetManager will interact with the CatalogManager for updating
the information about the dataset is interacting with. For example, a
format conversion means triggering a Spark job that creates first a copy
of the source dataset in the target format. Then the catalog dataset is
updated for taking into account the new dataset format.

The DatasetManager is also responsible for publishing the dataset into a
proper serving layer. For example, a dataset operation could create an
Impala external mapped on the dataset directory sitting on HDFS. This
publishing operation will provide the user with the JDBC/ODBC connection
informations for connecting an external tool to that table.

Deployment View

The DAF platform is designed to be deployed on two disjoint clusters of
machines, as shown in the next figure:

	Kubernetes Cluster - this cluster is composed by nodes with the
role of edge nodes from the Hadoop cluster standpoint. The edge nodes
are configured to have access to all the Hadoop platforms as client.
Moreover, these nodes are hosting a kubernetes cluster where all the
𝜇-services will be deployed. Being deployed on nodes that are also
Hadoop edge nodes provides the 𝜇-services with the capabilities to
interact with Hadoop out of the box.

	Hadoop Cluster - this is the cluster of machines where Hadoop has
been deployed.

[image: Deployment View]
Fig. 4 Deployment View

From a deployment perspective, other essential points regard the
integration with:

	an Identity Management System, in order to centralize the user
account management and to enable the implementation of all security
issues;

	tools supporting the access, the manipulation and the analysis of
datasets.

IMS integration

An important piece is the integration with an external Identity
Management System (currently a FreeIpa
instance [https://www.freeipa.org]). All the information regarding
users and user groups willing to access the platform are centrally
listed on this system. This is the base for implementing all the
authentication and authorization mechanisms the DAF platform will
require for securing the data access.

Any user that will access the platform shall be registered in the
Identity Management System and any access to the data will be tracked
allowing the auditing of data accesses for security purposes.

As shown in the following figure, both the Kubernetes Cluster and the
Hadoop Cluster refer to the same IMS. Consequently, it is possible to
map user accounts created on the two cluster, improving the security of
the entire system.

[image: Deployment View]
Fig. 5 Deployment View

Notebook support

The platform will support the usage of notebooks for accessing and
manipulating the data. The platform will provide access to the Hadoop
computational resources through proper services that avoid the user to
access the Hadoop cluster directly.

A possible approach could be the combination of a REST service like
livy [http://livy.io] with a tool like
Sparkmagic [https://github.com/jupyter-incubator/sparkmagic] for
giving access from a Jupyter notebook to Spark.

The platform will provide special libraries for directly accessing the
data sets from the notebooks just by knowing their URIs.

DAF - Security & Privacy Issues

Data at rest security policies

The default storage platform is HDFS, so once the data has been put on
HDFS must be protected using the proper permissions. Moreover, since the
data need to be accessible through Impala, a set of proper permissions
should be provided to Sentry to open the data to the authorized users.

Regardless the data is accessed either from HDFS or through Impala the
security policies should be the same. That means that the security rules
defined regardless the particular data acces and should be compiled into
prpper permissions rule either on HDFS or Sentry.

Security rules

	Data Ownerhip

Any data set should be owned by an identified principal. Even in case of
an organisation a specific user should be identified as the owner of
that specific dataset.

	Singler User Group

Any user should have a corresponding group named with the same username,
i.e. a user David Greco with a username david should have a group
called david containing only the username david.

This is the default in the POSIX world, in case of an integration with
Active Directory this policy needs to be enforced.

The reason of this rule lies in the fact that Sentry doesn’t allow to
grant a privilege to a user but only to a group. Since, we want to
maintain the single owner principle with to resort to this policy to
maintain our security approach coherent.

	Access Delegation

Only the dataset owner is allowed to provide access to it.

For example, if a dataset D is owned by david, only david
can give read access to D to another user paul.

Implementing this rule means appliying to the dataset HDFS directories
additional HDFS ACLs and to grant specific roles at the Sentry level as
we will show later.

The same rule apply in case a user wants to provide access to a group.
In general the dataset owner can give access to the dataset to a
combination of users and groups.

	Access Rights

The access rights are only two: READ and WRITE, these rights as said
before have to be mapped on proper HDFS ACLs and Sentry roles and
grants.

	Security Rules and mapping on HDFS and Sentry

	

Let’s start with ordinary data first. So, we know that the ordinary data
HDFS layout is defined in the following way:

/daf/ordinary/

The content of this directory is organized adopting the following rules:

sourceOrg/domain/subdomain/datasetName.stage.datasetFormat

where:

	sourceOrg is the name of the organization owning the dataset.
This name is specified as organizationType_organizationName

	domain is the parent category to which the dataset belong (e.g.
“mobility”)

	subdomain is the sub-category to which the dataset belong (e.g.
“traffic”)

	datasetName is the name of the dataset

	stage is the particular stage of the dataset in the
transformation pipeline, ex. landing, stage1

	datasetFormat specifies the serialization format. At the moment
the Allowed format are: csv, json, avro, parquet.

So, let’s suppose that a representative user for sourceOrg is
dataowner then the following rules should be applied to HDFS:

	hdfs dfs -chown -R dataowner:dataowner /daf/ordinary/sourceOrg/domain/subdomain/datasetName.stage.datasetFormat

	hdfs dfs -chmod -R go-rwx /daf/ordinary/sourceOrg/domain/subdomain/datasetName.stage.datasetFormat

	hdfs dfs -setfacl -R -m user:impala:rwx /daf/ordinary/sourceOrg/domain/subdomain/datasetName.stage.datasetFormat

	This fix the ownership to the orgamnisation’s representative user.

	Only the dataset owner has full access to that dataset.

	The impala user need access to all the datasets since Impala doesn’t
support secure impersonation and all the daemons run under the impala
user.

All the directories rooted under /daf/ordinary/sourceOrg should
follow the same rules.

Once the HDFS rules has been applied the next step is to apply a set of
rules at the Sentry side to implement logically the same security rules
we described before:

First of all a proper database should be created to hold the dataset,
the database should be named accordingly with the following naming
convention:

domain__subdomain

in Impala SQL DDL commands:

CREATE DATABASE domain__subdomain

Then an external table should be created pointing to the dataset
directory, something like:

CREATE EXTERNAL TABLE domain__subdomain.dataset_stage_format
(
 ...
)
...
LOCATION '/daf/ordinary/sourceOrg/domain/subdomain/dataset.stage.format';

Then proper Sentry roles and rights should be granted:

This is for the database:

CREATE ROLE db_domain__subdomain_role;
GRANT ALL ON DATABASE domain__subdomain TO ROLE db_domain__subdomain_role;
GRANT ROLE db_domain__subdomain_role TO GROUP dataowner;
INVALIDATE METADATA;

where the dataowner group is actually a group containing only the user
dataowner as dictated by the security rule 2.

Then, this is for the table:

CREATE ROLE table_domain__subdomain__dataset_stage_format_role;
GRANT SELECT ON TABLE domain__subdomain.dataset_stage_format TO ROLE table_domain__subdomain__dataset_stage_format_role;
GRANT ROLE table_domain__subdomain__dataset_stage_format_role TO GROUP dataowner;
INVALIDATE METADATA;

Installation Guide

This section provides installation information for all the components of DAF, except for the Big Data Platform. Based on your development needs, you will be able to install only the individual components you require for your task. Almost every component has dependencies on other components–this will be documented in the installation guide of each component.

In general, components developed internally are available via GitHub repositories, meanwhile external ones have been dockerized with all needed dependencies and configurations.

Several components are dependent on LDAP and/or FreeIPA. In this case, we offer you three alternatives: a dockerized LDAP, a remote FreeIPA test server, or a dockerized FreeIPA (working with Linux only at the moment). All of them will have test accounts already created for you.

The best way to have everything installed and properly configured is to use the Virtual Machine.

See the Local Installation guide to know how to configure the Virtual Machine or, if you want to run only a few components, please follow the component installation guide you find at the links below.

	 Local Installation

	 CatalogManager

	 IngestionManager

	 SecurityManager

	 DatasetManager

	 StorageManager

	 FrontendManager

	 Dataportal-public

	 Dataportal-private

	 Semantics

	 FreeIpa Docker

	 LDAP Docker

	 CKAN Docker

	 Superset Docker

	 Metabase Docker

	 JupyterHub Docker

Local Installation

This guide explains how to use the Virtual Machine to create a test environment.

The procedure will soon be migrated to Vagrant [http://www.vagrantup.com/].
If you want, you can contribute with a pull request to the upstream repository [http://github.com/italia/daf].

You can download the OVA image at the following link: download [https://developers.italia.it/static/DAF-Ubuntu16-Docker-test.ova] (8.6 GB)

Warning

In order to use the Virtual Machine, you must have at least 20 Gb of free space in your hard drive.

Virtual Machine Account

	USER

	user

	PASSWORD

	password

Check the IP address assigned to the Virtual Machine (also check bridge of virtual machines before start if you use wireless or Ethernet adapter on your PC) using the command:

> ip a | grep enp0s3

Access the Virtual Machine via ssh:

> ssh user@xxx.xxx.xxx.xxx (Virtual Machine IP)

Docker image

In the Virtual Machine, to access a folder with container docker image:

> sudo -i
> cd /root/docker

All the containers start automatically when the Virtual Machine starts.

Configuration

In your PC Hosts file, add the following lines:

x.x.x.x ipa.example.test superset.daf.test.it metabase.daf.test.it ckan.daf.test.it mongodb ckan metabase supersetd
127.0.0.1 datipubblici-private.daf.test.it

where x.x.x.x is the Virtual Machine IP address.

Access Docker Services

When the Virtual Machine is running, you can access to the docker services from your browser.

FreeIPA

Use the following link https://ipa.example.test to access to FreeIPA.

The credentials are:

	USER

	admin

	PASSWORD

	adminpassword

or

	USER

	ldap

	PASSWORD

	ldap

The user ldap is used to bind docker system. Every user in ldap has the same user name and password.

If you are using Google Chrome, do not use the modal login on your browser, because it doesn’t work.

Use the login in the web page.

Actual users:

	raffaele

	alssandro

	andrea

	pierpaolo

	david

	alberto

CKAN

Use the following link http://ckan:5000 to access the CKAN in the Virtual Machine.

Use only the user ldap to login.

METABASE

Use the following link http://metabase:3000 to access the metabase in the Virtual Machine, with credentials:

	USER/MAIL

	admin@admin.it

	PASSWORD

	admin01

or login with the user ldap.

SUPERSET

Use the following link http://supersetd:8088 to access the superset in the Virtual Machine.

	USERNAME

	superadmin

	PASSWORD

	password1

Services

In the host, run the following command to clone the DAF project:

> git clone https://github.com/italia/daf.git

In case sbt is not found, install it:

> echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a /etc/apt/sources.list.d/sbt.list
> sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 2EE0EA64E40A89B84B2DF73499E82A75642AC823
> sudo apt-get update
> sudo apt-getinstall sbt

Common

On the host PC, go to the folder daf/common and run the following commands:

> sbt
> clean
> compile
> publishLocal

Security Manager

In your daf/security_manager folder, run:

> sbt
> clean
> compile
> run -Dconfig.resource=svil.conf -Dhttp.port=9002

Catalog Manager

On the host PC, go to the folder dat/catalog_manager and run the commands:

> sbt
> clean
> compile
> run -Dconfig.resource=svil.conf -Dhttp.port=9001

Dataportal

Clone the project daf-dataportal-backend from GitHub using the following command:

> git clone https://github.com/italia/daf-dataportal-backend

In your daf-dataportal-backend project, run the following commands:

> sbt
> clean
> compile
> run -Dconfig.resource=local.conf

Front-end

Clone the project daf-dataportal from GitHub:

> git clone https://github.com/italia/daf-dataportal

In your daf-dataportal project, add the following lines in …/src/config/serviceurl.js:

apiURLSSOManager: "http://localhost:9002/sso-manager",
apiURLDatiGov: "http://localhost:9000/dati-gov/v1",
apiURLCatalog: "http://localhost:9001/catalog-manager/v1",
apiURLIngestion: "http://localhost:9002/ingestion-manager/v1",
apiURLSecurity: "http://localhost:9002/security-manager/v1",
urlMetabase: 'http://metabase.daf.test.it',
urlSuperset: 'http://superset.daf.test.it',

domain:".daf.test.it"

In your …/package.json edit the line in the section scripts

"start": "PORT=80 react-scripts start"

You can run the FE in the following modality:

Start in Debug Mode:

npm install
npm start

Start in Production Mode:

npm run build
npm install -g serve
serve -s build

For each configuration, the application should be reached through the following URL:

http://datipubblici-private.daf.test.it

When you access for the first time, click on the button “Registrati” to sign up.
After the registration, access the FreeIpa, search for your account and add it to your user groups “daf_admins”.
Now, log out and log in again to DAF - Dataportal to see the admin features.

Catalog Manager

Catalog Manager is the microservice responsible for storing and retrieving metadata associated to the datasets stored in the DAF [https://github.com/italia/daf/].
It uses a Docker Compose CKAN [https://github.com/lorenzoeusepi77/ckanlast] based storage layer as a backend. It is developed following the OpenApi specification [https://github.com/OAI/OpenAPI-Specification]
and contract-first design pattern.

Every microservice can run as a standalone module using mock data. Not all endpoint can retrieve mock data but all endpoints are described using https://swagger.io/ at localhost:9000/catalog-manager

See here for more details.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../catalog_manager

	sbt

	run

	connect to http://localhost:9000/catalog-manager

You should see a swagger UI with all endpoints described.
Nevertheless, the authorization is not required by the UI you should pass at least a Basic authorization token made by an equal user name and password.

To test the endpoints, we suggest to use a tool like Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

[TBD]

Ingestion Manager

The IngestionManager manages all the data ingestion activities
related to the datasets. The IngestionManager provides an API to ingest data from a data source into the DAF platform.

See here for more details.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../ingestion_manager

	sbt

	run

	connect to http://localhost:9000/ingestion-manager

You should see a swagger UI with all endpoints described.
Nevertheless, the authorization is not required by the UI you should pass at least a Basic authorization token made by an equal user name and password.

To test the endpoints we suggest to use a tool like Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

[TBD]

Security Manager

Security Manager is the microservice responsible to manage security of the web application and the REST API developed within DAF.
Its APIs verifies user’s credential, produces JWT tokens needed to access DAF services and handles the SSO on the solutions integrated in the Data Portal.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../security_manager

	sbt

	run

	connect to http://localhost:9000/security-manager

You should see a swagger UI with all endpoints described.
Nevertheless, the authorization is not required by the UI you should pass at least a Basic authorization token made by an equal user name and password.

To test the endpoints we suggest to use a tool like Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

[TBD]

Dataset Manager

The DatasetManager manages several operations related to the dataset, such as:

	to return the data of the dataset (or a sample of it) in a specified format;

	to create a specific view on top of a dataset;

	to get the dataset schema in a given format (e.g. AVRO);

	to create a new dataset based on an existing one but saved with a different storage mechanism or based on a transformation of the existing dataset, etc.

See here for more details.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../dataset_manager

	sbt

	run

	connect to http://localhost:9000/dataset-manager

You should see a swagger UI with all endpoints described.
Nevertheless, the authorization is not required by the UI you should pass at least a Basic authorization token made by an equal user name and password.

To test the endpoints we suggest to use a tool like Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

[TBD]

Storage Manager

The StorageManager is responsible for abstracting the physical medium
where the data is actually stored.

See here for more details.

Local installation

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../daf/storage_manager

	sbt

	run

	connect to http://localhost:9000/storage-manager

DAF integration note

[TBD]

Endpoints

[TBD]

Frontend Manager

What is it?

The Frontend Manager is the layer that serves functionalities to the frontend web applications (Dataportal-public and Dataportal-private). It integrates external applications (e.g. CKAN) and exposes REST API to the web apps.

It has been developed using the following technologies:

	playframework 2.5.12

	scala 2.11.8

	sbt 0.13

	Zalando’s api-first-hand

Install

	$ git clone git@github.com:italia/dati-frontendserver.git

	$ sbt compile

	$ sbt run

	Connect to http://localhost:9000

Setup

…

Dataportal-public

What is it?

The Dataportal-public [https://dataportal.daf.teamdigitale.it/] is the web app that allows access to the open data catalog and other content that can be exposed publicly.

Install

Before proceeding with the installation steps, you need to install and run the following external components:

Basic Dependencies

There are no basic dependencies needed.

Features Enabling Dependencies

Connection with DataStories:

	daf-dataportal-backend

Installation Steps

First of all, clone the following GitHub repository:

> $ git clone https://github.com/italia/daf-dataportal-backend

Start in Debug Mode:

> npm install
> npm start

Start with mock server:

> npm run mock

Start in Production Mode:

> npm run build
> npm install -g serve
> serve -s build

Dataportal-private

What is it?

The Dataportal-private [https://dataportal-private.daf.teamdigitale.it] is the web app that allows access to the functionalities of DAF, like:

	Ingestion form to add dataset with metadata

	Business Intelligence with Superset (AirBnB)

	Graphs with Metabase

	Data science with Jupyter + Sparkmagic

	Ontologies and Controlled Vocabularies repository

Install

Before proceeding with the installation steps, you need to install and run the following external components:

Basic Dependencies

	daf-dataportal-backend

	FreeIPA

	CatalogManager

	SecurityManager

Features Enabling Dependencies

	Superset

	Metabase

	JupyterHub

	CKAN

Installation Steps

First of all, you need to clone the following GitHub repository:

> git clone https://github.com/italia/daf-dataportal

Start in Debug Mode:

> npm install
> npm start

Start with mock server:

> npm run mock

Start in Production Mode:

> npm run build
> npm install -g serve
> serve -s build

Semantic microservices

The semantic part of the DAF consists of the following microservices:

	 OntoNetHub

	 Semantic Manager

	 Semantic Repository

	 Semantic Validator

OntoNetHub

OntoNetHub is a microservice meant to deal with the management of ontology networks.
This include the upload, deletion, storage, and indexing of an ontology part of a network.

OntoNetHub is designed as an extension of Apache Stanbol and released as a Docker component. Hence, users need Docker to build and run OntoNetHub.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/teamdigitale/ontonethub

	docker-compose build

	docker-compose up

	connect to http://localhost:8000/stanbol/ontonethub

To test the endpoints it’s possible to use a tool similar to Postman [https://www.getpostman.com/]

DAF integration note

This microservice currently provides functionalities to the semantic_manager, which takes care of integrating them to DAF and the public dataportal:

	with the ingestion form of DAF, providing suggestions for the “semantic” annotations of dataset fields.

	with the public dataportal, providing a list of available ontologies and “core” vocabularies.

Endpoints

There is a list of available endpoints:

	/stanbol/ontonethub/ontology : can be used to add a new ontology using a POST request.

	/stanbol/jobs/{job_id} : provides informations about the status of a job associated with the upload of an ontology.

	/stanbol/ontonethub/ontology/{ontology_id} : can be used with a GET request to access the information about the specific ontology.

	/stanbol/ontonethub/ontology/{ontology_id} : can be used with a DELETE request for deleting an existing ontology.

	/stanbol/ontonethub/ontology/{ontology_id}/source : can be used with a GET request for obtaining a representation of the ontology in JSON-LD.

	/stanbol/ontonethub/ontologies/find : can be used for querying the OntoNetHub and retrieving OWL entities from the ontologies managed by it.

Detailed informations about the service can be found here [https://github.com/teamdigitale/ontonethub]

Semantic Manager

Semantic Manager is the microservice designed to provide a central access point for the so-called “semantic” functionalities,
involving the usage of ontologies and core vocabularies supporting both DAF processes and the catalog front-end for users.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf-semantics

	cd daf-semantics/semantic_manager

	sbt docker:publishLocal

	sbt run

	connect to http://localhost:9000

You should see a swagger ui with all endpoints described.

To test the endpoints I suggest to use a tool similar to Postman [https://www.getpostman.com/]

DAF integration note

This microservice is currently integrated:

	with the ingestion form of DAF, providing suggestions for the “semantic” annotations of dataset fields. Those annotations are saved into the schema for the imported dataset, and act as references for the standardization of fields.

	with the public dataportal, providing a list of available ontologies and “core” vocabularies.

Endpoints

There are two endpoints:

	/kb/v1/ontologies : provides a list of the available ontologies

	/kb/v1/ontologies/properties/find : enable searching by terms and language for properties which may be used for a simple annotation of dataset fields in the ingestion form (and later for standardization).

Detailed informations about the service can be found here [https://github.com/italia/daf-semantics/tree/master/semantic_manager]

Semantic Repository

Semantic Repository is the microservice designed to provide basic functionalities for managing ontologies/vocabularies
(and data, in the future) using the the well-know [RDF4J](http://rdf4j.org/) interface as an abstraction over triplestores.
The idea is to have a list of core functionalities for a catalog service of queryable ontologies, which can be implemented over an external triplestore, and it will evolve accordingly.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf-repository

	cd daf-semantics/semantic_repository

	sbt docker:publishLocal

	sbt run

	connect to http://localhost:9000

You should see a swagger ui with all endpoints described.

To test the endpoints I suggest to use a tool similar to Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

There is a list of basic endpoints:

	/kb/v1/ontologies : using this endpoint it’s possible to add new ontologies using HTTP POST with parameters. By conventions the user should assign a prefix / context pair (which willbe unique in the underlying repository catalog).

	/kb/v1/ontologies/remove : the endpoint is dedicated to remove an existing ontology, using the context where it was published.

	/kb/v1/contexts : a list of the existing context can e retrieved: by convention ontologies are published on assigned contexts, which will be different from the ones used for data.

	/kb/v1/prefixes : this endpoints returns the full list of used prefix / namespace pairs, where the namespace usually coincide with an assigned contexts on the underlying repository.

	/kb/v1/prefixes/lookup : this endpoint can be used for retrieving the namespace associated to a given prefix.

	/kb/v1/prefixes/reverse : this endpoint can be used for retrieving the prefix associated to a given namespace.

	/kb/v1/triples : provides the amount of available triples.

	/kb/v1/triples/{prefix} : provides the triples count for a given context.

Detailed informations about the service can be found here [https://github.com/italia/daf-semantics/tree/master/semantic_repository]

Semantic Validator

Semantic Validator is the microservice designed to provide a simple way for validating RDF metadata dataset against a specific Ontology on an underlying triplestore.
The validator is currently based on a set of queries (about 150 for DCAT-AP_IT) returning a record of information for the rules broken by the dataset, the most important infos are:

	Class name: the class involved in the rule (ex: Organization for DCAT-AP_IT)

	Rule ID: the broken rule id (ex: 207 for DCAT-AP_IT)

	Error description: the problem description (ex: “vcard:hasURL should be a resource” for DCAT-AP_IT)

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf-semantics

	cd daf-semantics/semantic_validator

	sbt docker:publishLocal

	sbt run

	connect to http://localhost:9000

You should see a swagger ui with all endpoints described.

To test the endpoints I suggest to use a tool similar to Postman [https://www.getpostman.com/]

DAF integration note

This microservice will be integrated with the front-end component “semantic_frontend” in the block called “Public Manager” as you can see in the DAF architecture main schema.

Endpoints

There are two endpoints:

	/validator/validate : in order to validate a document

	/validator/validators : in oder to ghe the list of available validators

Detailed informations about the service can be found here [https://github.com/italia/daf-semantics/tree/master/semantic_validator]

Freeipa LDAP version: 4.4.0

Docker

FreeIPA server can be run in a Docker container for testing or demo purposes. It makes it possible to run all the processes comprising the server in an isolated way, leaving the host free to run other software, not clashing with the FreeIPA server.

This installation is done on Ubuntu 16.04. FreeIPA is focused on Linux (and other standards compliant) systems. Therefore, in our knowledge, you cannot run a container of a FreeIPA server on Mac OS or Windows. However, any help in this direction is very welcomed!!

Follow these steps to run our FreeIPA server docker:

	Create a directory which will hold the server data:

> mkdir /var/lib/ipa-data

	Edit /etc/hosts and ensure that the IPA server address is listed. This is required for Apache to work properly. You have to change IPA_SERVER_IP with the IPA server IP:

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
IPA_SERVER_IP ipa.example.test

	Finally, You run the container:

> docker run -it -p 389:389 -p 443:443 -p 636:636 --name freeipaldap --cap-add SYS_ADMIN --security-opt seccomp:unconfined -v /sys/fs/cgroup:/sys/fs/cgroup:ro --tmpfs /run --tmpfs /tmp -v /var/lib/ipa-data:/data:Z -h ipa.example.test italia/freeipa-server --ds-password=The-directory-server-password --admin-password=The-admin-password

where:

	–cap-add SYS_ADMIN, performs a range of system administration operations (see here [https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities] for more details).

	–security-opt seccomp:unconfined to run a container without the default seccomp profile (see here [https://docs.docker.com/engine/security/seccomp/] for more details).

	-v /var/lib/ipa-data:/data:Z to store data and configurations in the folder /var/lib/ipa-data/

Answer to the question:

Do you want to configure integrated DNS (BIND)? [no]: –> press “Enter”

Server host name [ipa.example.test]: –> press “Enter”

Please confirm the domain name [example.test]: –> press “Enter”

Please provide a realm name [EXAMPLE.TEST]: –> press “Enter”

Continue to configure the system with these values? [no]: –> type “y” and press “Enter”

Wait some time until FreeIPA server is completely configured and started.
The server is ready when on the shell the following message appears:

> FreeIPA server configured.

Note

You need to answer the previous questions only the first time you build the image and run docker.

	You can connect to FreeIPA Server from a web interface:

https://IPA_SERVER_IP:443

USER: admin

PW: adminpassword

	You can also connect with an LDAP client with Server IP address IPA_SERVER_IP

	The container can then be started and stopped with the following commands:

> docker stop freeipaldap
> docker start freeipaldap

References

[1] FreeIpa docker-hub documentation [https://hub.docker.com/r/freeipa/freeipa-server/].

[2] Using Free Ipa for user authentication [https://annvix.com/using_freeipa_for_user_authentication].

[3] FreeIpa website [https://www.freeipa.org/page/Docker].

LDAP Installation

This docker container allows you to start a simple LDAP server (OpenLdap [http://www.openldap.org/]
) and a client (phpLDAPadmin [http://phpldapadmin.sourceforge.net/]
). In particular, the Docker Compose downloads an initial database having domain daf.test.it and containing the user bob with password password.

Clone the git project:

> git clone git@github.com:italia/daf-recipes.git

Run the docker container:

> cd ./daf-recipes/ldap
> docker-compose up -d

Check whether dockers are running:

> docker ps
e8ff9611aeff osixia/openldap "/container/tool/r..." 17 minutes ago Up 17 minutes 0.0.0.0:389->389/tcp, 0.0.0.0:636->636/tcp ldap
6a0d0d6c3b9a osixia/phpldapadmin "/container/tool/run" 17 minutes ago Up 17 minutes 0.0.0.0:80->80/tcp, 443/tcp phpldapadmin

Note

The Docker Compose requires that ports 80, 636 and 389 are available. If not, change them.

Now, open your favorite browser and type http://localhost.

[image: LDAP login page]
Login as cn=admin,dc=example,dc=org and password admin to navigate inside.

[image: LDAP web app]

FreeIpa Instance

We installed a FreeIpa server which can be used for test purposes. It can be reached at the address 91.206.129.245.

CKAN

CKAN is an open-source DMS (data management system) for powering data hubs and data portals.
CKAN makes it easy to publish, share and use data. It powers datahub.io, catalog.data.gov and data.gov.uk, among many other sites.

This guide will show you how to use Docker Compose to set up and run a CKAN [https://ckan.org/] instance which uses LDAP credentials to authenticate users. In particular, you can use an openLDAP Docker container or a FreeIpa instance.

Account Management Dependency

This configuration of CKAN needs an account management system to work with. We provide three different options, you will find more info on their respective sections:

	Local LDAP Docker

	Local FreeIPA Docker (works only with Linux)

	Remote FreeIpa Server

Ckan docker compose

Now that we have a LDAP server up we can run the CKAN Docker Compose. It will run an instance of Solr, Postgresql, Redis and Mongo.

First we have to build a custom image:

> cd ./daf-recipes/ckan
> ./build_local.sh

Then edit the file ckan.ini:

	If you are using our openLDAP server:

LDAP Intergration with ldap and ip address
ckanext.ldap.uri = ldap://LDAP_IP:389
ckanext.ldap.auth.dn = cn=admin,dc=daf,dc=test,dc=it
ckanext.ldap.auth.password = admin
ckanext.ldap.base_dn = cn=users,cn=accounts,dc=daf,dc=test,dc=it
ckanext.ldap.search.filter = uid={login}
ckanext.ldap.username = uid
ckanext.ldap.email = mail
ckanext.ldap.ckan_fallback = True

where LDAP_IP is the IP of the LDAP docker. To know the LDAP IP, run:

> docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' ldap
172.22.0.2

We know that this is not the best approach to connect containers among them (maybe it is the worst), we are using a deprecated compose file version (i.e. version 1 rather than using version 3), and we are using very heavy images. We will improve CKAN docker compose as soon as possible.

	
	If you are using our FreeIpa server

	# LDAP Intergration with ldap and ip address
ckanext.ldap.uri = ldap://91.206.129.245:389
ckanext.ldap.auth.dn = uid=admin,cn=users,cn=accounts,dc=daf,dc=test,dc=it
ckanext.ldap.auth.password = aiyaiPh8
ckanext.ldap.base_dn = cn=users,cn=accounts,dc=daf,dc=test,dc=it
ckanext.ldap.search.filter = uid={login}
ckanext.ldap.username = uid
ckanext.ldap.email = mail
ckanext.ldap.ckan_fallback = True

Now that CKAN container is up, type http://localhost:5000 on your browser and login as user bob (password password).

[image: CKAN login page]
[image: CKAN dashboard]

Superset

This guide presents how to configure and run a docker containing a Superset [http://superset.apache.org]
instance.

Clone the git project:

> git clone git@github.com:italia/daf-recipes.git

Go to the superset directory:

> cd superset

The Superset docker connects, by-default, to a test LDAP server provided by
the DAF platform. If you need to configure another LDAP server, choose the proper configuration of the LDAP parameters inside the configuration file “superset_config.py”:

	AUTH_TYPE = AUTH_LDAP

	AUTH_LDAP_SERVER = “ldaps://server:636”

	AUTH_LDAP_SEARCH = “cn=users,cn=accounts,dc=test,dc=example,dc=it”

	AUTH_LDAP_UID_FIELD = “uid”

	AUTH_LDAP_FIRSTNAME_FIELD = “givenName”

	AUTH_LDAP_LASTNAME_FIELD = “sn”

	AUTH_LDAP_EMAIL_FIELD = “mail”

	AUTH_LDAP_BIND_USER = “uid=admin,cn=users,cn=accounts,dc=test,dc=example,dc=it”

	AUTH_LDAP_BIND_PASSWORD = “password”

	AUTH_LDAP_ALLOW_SELF_SIGNED = True

Build the Superset image:

> ./build.sh
> docker-compose up -d

This will start Superset, Postgres and Redis servers.
Wait some time to be sure all processes are up and running.

Run the init command to load into Superset some data for testing:

> ./init.sh

Connect to http://localhost:8088/ to browse the Superset web app.

Metabase

This guide explains how to run and execute a Metabase server.

Follow these steps to run the Docker images.

Clone the git project:

> git clone git@github.com:italia/daf-recipes.git

Go to the metabase directory, the images needed by docker-compose and run it:

> cd metabase
> ./build_local.sh
> docker-compose up -d # it will run all the needed containers

Open the Metabase home at http://localhost:3000.

Go to GitHub [https://github.com/italia/daf-recipes/tree/master/metabase] to check how to set up Metabase.

Jupyter

This guide will show you how to use Docker Compose to set up and run a JupyterHub [https://jupyterhub.readthedocs.io/en/latest/] instance
which uses LDAP credentials to authenticate users.

Account Management Dependency

This configuration of CKAN needs an account management system to work with. We provide three different options, you will find more info on their respective sections:

	Local LDAP Docker

	Local FreeIPA Docker (works only with Linux)

	Remote FreeIpa Server

JupyterHub

This Docker container runs a JupyterHub instance which is connected with a PostgreSQL database.

Run the Docker container:

> cd ./daf-recipes/jupyterhub
> docker-compose up -d

Check whether dockers are running:

> docker ps
8350963ac06c jupyterhub_jupyterhub "/wait_db_is_ready.sh" 16 minutes ago Up 16 minutes 0.0.0.0:8000->8000/tcp jupyterhub
6a0d0d6c3b9a osixia/phpldapadmin "/container/tool/run" 17 minutes ago Up 17 minutes 0.0.0.0:80->80/tcp, 443/tcp phpldapadmin
e8ff9611aeff osixia/openldap "/container/tool/r..." 17 minutes ago Up 17 minutes 0.0.0.0:389->389/tcp, 0.0.0.0:636->636/tcp ldap
cee2d35feaaf postgres:9.6 "docker-entrypoint..." 2 hours ago Up 2 hours 0.0.0.0:5432->5432/tcp postgresjupyterhub

To open the interactive shell type http://localhost:8000 and login as user alice (password password).

[image: JupyterHub login page]

How to set-up the DAF platform: multi-node cluster

Pre-requisites

Please add here the minimum pre-requisites to install the DAF platform
(es. minimum number of nodes, cluster base configuration, ecc.).

Step-by-step cluster set-up guide

To install the DAF platform on a distributed environment please refer to
FIND A
NAME [https://github.com/teamdigitale/kubernetes_glusterfs_ansible_provisioning]
project.

CatalogManager API & endpoints

The CatalogManager provides the following functionalities:

	catalog-ds/add/{info} => CatOpsReport

It creates a new Dataset in the Dataset Catalog. It returns an object
(JSON) of type CatOpsReport that provides info on the insert
operation. In case the input source of the data has been provided. It
perform coherence checks that are necessary to save the new dataset
(e.g. check vs an associated StandardSchema).

{info} is an object (JSON) containing metadata info for the
Dataset to be created.

	catalog-ds/update/{dataset URI o ID}/{info} => CatOpsReport

It updates the info of an existing Dataset. It returns an object
(JSON) of type CatOpsReport that provides info on the update
operation. {dataset URI o ID} can be either the dataset URI or its
associated ID.

{info} is an object (JSON) containing metadata info for the
Dataset to be created.

	
catalog-ds/get/{query info}/[{return info}] =>
List[DatasetCat]

It looks for one or more datasets matching the {query info}
parameters. It is also possible (optional) to specify which info
will be retrieved, otherwise the whole dataset info will be passed.
It returns a list of DatasetCat object, containing metadata
info of the Dataset returned. {query info} it is an object
(JSON) with the info to be used to look up the dataset from the
Catalog.

[{return info}] it is an optional parameter/object (JSON) to
restrict the fields to be returned.

	
catalog-ds/check-metadata/{info} => MetadataCheckReport

It checks if the metadata in input ({info}) are internally
coherent. Moreover, if the metadata contains info on data to be
ingested, it also check that the data structure of the input data
are coherent with the schema defined in the metadata info. It
returns an object of type MetadataCheckReport that contains the
results of the checks performed.

	
catalog-ds/check-metadata-ds/{dataset URI o ID}/{info} =>
MetadataCheckReport

It looks up the metadata of the dataset specified via its URI or ID
and checks if the retrieved metadata in input ({info}) are
internally coherent. Moreover, if the metadata contains info on
data to be ingested, it also check that the data structure of the
input data are coherent with the schema defined in the metadata
info. It returns an object of type MetadataCheckReport that
contains the results of the checks performed.

DatasetManager API & endpoints

The DatasetManager provides the following functionalities:

	
dataset-mgmt/get-data/{dataset URI o ID}/[{query type}]/[{output data format}]/[{sql query on data}]
=> DatasetData

It retrieves the data of the dataset and allows for options
specifying the data format (i.e. JSON, CSV, etc.) of the output,
the type of query to be performed (i.e. a bulk operation, a sample,
etc.), and a SQL query (other querying languages may be considered
for the future) to perform specific queries on the dataset. There
may be simpler version of this endpoint with predefined options.

{dataset URI o ID} can be either the dataset URI or its
associated ID.

[{query type}] is optional and specifies the type of data
result wanted. For example, bulk will retrieve the entire
dataset (access rights to bulk operation should be carefully set),
sample will retrieve a 5% sample of the entire dataset,
sample10 will retrieve the 10%, sample100R will retrieve
the first 100 rows, etc.

[{output data format}] is an optional field specifying the data
format the output will have, e.g. json, csv, avro, etc.

[{sql query on data}] is optional and allows to specify a SQL
query on the data.

	
dataset-mgmt/feat-jdbc/{enble/disable}/{dataset URI o ID} =>
DsFeatReport

API that enable or disable the feature “Expose a JBDC connector for
the dataset”. It returns an object of type DsFeatReport which
contains info on the operation performed.

{enble/disable} it tells to enable or disable the feature.

	
dataset-mgmt/feat-jdbc/get/{dataset URI o ID} =>
DsFeatJdbcConn

API that returns a DsFeatJdbcConn object (JSON) that contains
info on the JDBC connection exposed by the dataset, if enabled.
{enble/disable} it tells to enable or disable the feature.

IngestionManager API & endpoints

The IngestionManager provides the following functionalities:

	ingestion-mgmt/add-with-info/{DatasetCat} => IngestionReport

It uses the info contained in the object DatasetCat to perform an
ingestion of the data referenced in the field
operational -> input_src. It returns an object (JSON) of type
IngestionReport containing info on the ingestion process performed
and the associated dataset (particularly wrt URI and other calcolated
fields that will be needed to finalize the storing of the metadata in
the catalog). {DatasetCat} is an object containing catalog info
about the dataset to which the incoming data ill be associated.

	ingestion-mgmt/add/{dataset query info}/{input file path} =>
IngestionReport

It uses {dataset query info} to look up for the dataset in the
Catalog. If more than one dataset is found, then an error will be
logged and the ingestion will be terminated.

{dataset query info} it is an object (JSON) with the info to be
used to look up the dataset from the Catalog.

{input file path} the path of the file containing the data to be
ingested. This should normally be placed in the designated entry point
folder of HDFS.

StorageManager API & endpoints

The StorageManager provides the following functionalities:

	TBD

Big data platform

The DAF Big Data platform is an environment offering capabilities for:

	storing and managing datasets: users can register and load datasets on the platform,
specifying the ingestion model (e.g batch, streaming), the serialization formats (e.g. Avro, Parquet),
the desired serving layers (e.g. HBase, Impala), metadata, etc;

	processing and analysing datasets: the platform supports several Hadoop-based technologies.
Users can not directly use these technologies, since they are mediated by user-friendly applications
provided by the Dataportal (e.g. Superset, Jupyter);

	managing of access rights for each dataset: the adopted security approach allows
the platform administrators to set the proper access rights for each dataset.

The DAF Big Data platform also enable redistributing datasets, developing data application, publishing insights
by mean of the above mentioned tools provided by the Dataportal: by these tools, data scientists and analysts can perform analysis on data, run statistical and machine learning models, and produce data
visualizazions and reports.

For more information, continue your tour looking at:

	 Big Data Architecture

	 Security & Privacy issues

Deployment View

The DAF platform is designed to be deployed on two disjoint clusters of
machines, as shown in the next figure:

	Kubernetes Cluster - this cluster is composed by nodes with the
role of edge nodes from the Hadoop cluster standpoint. The edge nodes
are configured to have access to all the Hadoop platforms as client.
Moreover, these nodes are hosting a kubernetes cluster where all the
𝜇-services will be deployed. Being deployed on nodes that are also
Hadoop edge nodes provides the 𝜇-services with the capabilities to
interact with Hadoop out of the box.

	Hadoop Cluster - this is the cluster of machines where Hadoop has
been deployed.

[image: Deployment View]
Deployment View

From a deployment perspective, other essential points regard the
integration with:

	an Identity Management System, in order to centralize the user
account management and to enable the implementation of all security
issues;

	tools supporting the access, the manipulation and the analysis of
datasets.

IMS integration

An important piece is the integration with an external Identity
Management System (currently a FreeIpa
instance [https://www.freeipa.org]). All the information regarding
users and user groups willing to access the platform are centrally
listed on this system. This is the base for implementing all the
authentication and authorization mechanisms the DAF platform will
require for securing the data access.

Any user that will access the platform shall be registered in the
Identity Management System and any access to the data will be tracked
allowing the auditing of data accesses for security purposes.

As shown in the following figure, both the Kubernetes Cluster and the
Hadoop Cluster refer to the same IMS. Consequently, it is possible to
map user accounts created on the two cluster, improving the security of
the entire system.

[image: Deployment View]
Deployment View

Notebook support

The platform will support the usage of notebooks for accessing and
manipulating the data. The platform will provide access to the Hadoop
computational resources through proper services that avoid the user to
access the Hadoop cluster directly.

A possible approach could be the combination of a REST service like
livy [http://livy.io] with a tool like
Sparkmagic [https://github.com/jupyter-incubator/sparkmagic] for
giving access from a Jupyter notebook to Spark.

The platform will provide special libraries for directly accessing the
data sets from the notebooks just by knowing their URIs.

Big Data platform Architecture

The DAF Big Data platform has been originally designed to
gather and store data coming from different Italian Public
Administrations. As a consequence, it provides efficient and easy to use
ingestion mechanisms for allowing external organisations to simply
ingest their data into the platform with minimal human intervention.

The DAF platform should not only provide support for data at rest and fast
data (streaming), but also for storing and managing collections of
unstructured data, textual documents. Besides providing those storing
capabilities, the next main goal is to provide a powerful mechanism for
data integration, i.e. a way for integrating data that traditionally
reside on separate silos. Enabling the correlation of datasets normally
residing on different systems/organizations can become a very powerful
enabling factor for discovering new insights on the data. The platform
should allow the data scientists to access its computational power for
implementing advanced analytics algorithms.

The Big Data architecture underlying the DAF is described by the following views:

	 Logical View

	 Component/microservice View

	 Deployment View

Logical View

The DAF platform is ultimately an implementation of the “data
lake [https://en.wikipedia.org/wiki/Data_lake]” concept. Assembling
a data lake involves a sequence of unavoidable steps meant to gather,
organise and publish the data in an efficient and secure way.

The most important aspect to take into account in a data lake being set
up is the data governance. Data governance means data organizations and
metadata management. Being able to catalog the datasets together with
their metadata is the prerequisite for implementing any further steps in
the data lake set up such as data ingestion/egestion and data security.

Implementing the Dataset Abstraction

The main abstraction the DAF platform is based upon is the
dataset.
From a technical point of view, a dataset is a collection of records described
by a data schema.
A dataset is identified by a logical URI and it is associated to a physical URI that identifies
the medium and location where the data is actually stored.

[image: URIs relationships]
URIs relationships

A LogicalURI must be associated to one and only one PhysicalURI that
can be associated to zero or more ViewURIs. Let’s explain this with an
example.

Let’s define a LogicalURI, for example:

daf://ordinary/comune_milano/mobilita/sharing/bike

this can be bound to the following PhysicalURI

dataset:hdfs:/daf/ordinary/comune_milano/mobilita/sharing/bike

and eventually to a ViewURI like

dataset:hive://comune_milano/mobilita/sharing/bike

In other words, while a PhysicalUri represents the actual location on
the Hadoop storage behind, a ViewURI represents the fact that a
dataset can be also exposed/view through a different platform.

As an example, a Hive/Impala external table created on top of a
directory on HDFS represents a view of the same data stored in HDFS.
This approach should allow modeling the mechanism of publishing datasets
with low latency SQL engines like Impala/Presto.

All the metadata about datasets including their URIs are collected and
organised in a catalog. This catalog is an essential component of the
DAF platform: all the data ingestion steps and all the data
manipulations’ steps that we allow on the data will be driven by it.

DAF Big Data Architecture Layers

The high-level view of the architecture is pretty simple. It is based on
the following layers:

	𝜇-Service Layer: it contains all the services needed to implement
the platform functionalities. It also contains the catalog manager
𝜇-service (CatalogManager) which is
responsible to manage all the datasets metadata.

	Ingestion Layer: it is responsible for all the ingestion tasks. It
is be based on tools for data ingestion automation like
NiFi [https://nifi.apache.org/]. It’s strongly integrated with
the CatalogManager because, as already said, all the incoming data
is listed in the catalog: this implies all the ingestion supporting
tools is integrated with the CatalogManager.

	Hadoop Computational Layer: it contains all the typical
computational platforms part of the extended Hadoop stack. The most
important platform which is going to be used extensively by the
platform is Spark [http://spark.apache.org/]. The 𝜇-service (in
the 𝜇-service layer) uses the computational layer for tasks like data
access and data manipulation/transformation. The ingestion layer uses
the computational layer for implementing tasks like data
conversion/transformation.

	Hadoop Storage Layer: it contains all the storage platform provided
by Hadoop: HDFS, Kudu and HBase. As described above the physical URIs
contain the information for accessing the data as stored on those
storage platforms.

The following image summarizes the logical view of the DAF architecture:

[image: Logical View]
Logical View

CatalogManager API & endpoints

The CatalogManager provides the following functionalities:

	catalog-ds/add/{info} => CatOpsReport

It creates a new Dataset in the Dataset Catalog. It returns an object
(JSON) of type CatOpsReport that provides info on the insert
operation. In case the input source of the data has been provided. It
perform coherence checks that are necessary to save the new dataset
(e.g. check vs an associated StandardSchema).

{info} is an object (JSON) containing metadata info for the
Dataset to be created.

	catalog-ds/update/{dataset URI o ID}/{info} => CatOpsReport

It updates the info of an existing Dataset. It returns an object
(JSON) of type CatOpsReport that provides info on the update
operation. {dataset URI o ID} can be either the dataset URI or its
associated ID.

{info} is an object (JSON) containing metadata info for the
Dataset to be created.

	
catalog-ds/get/{query info}/[{return info}] =>
List[DatasetCat]

It looks for one or more datasets matching the {query info}
parameters. It is also possible (optional) to specify which info
will be retrieved, otherwise the whole dataset info will be passed.
It returns a list of DatasetCat object, containing metadata
info of the Dataset returned. {query info} it is an object
(JSON) with the info to be used to look up the dataset from the
Catalog.

[{return info}] it is an optional parameter/object (JSON) to
restrict the fields to be returned.

	
catalog-ds/check-metadata/{info} => MetadataCheckReport

It checks if the metadata in input ({info}) are internally
coherent. Moreover, if the metadata contains info on data to be
ingested, it also check that the data structure of the input data
are coherent with the schema defined in the metadata info. It
returns an object of type MetadataCheckReport that contains the
results of the checks performed.

	
catalog-ds/check-metadata-ds/{dataset URI o ID}/{info} =>
MetadataCheckReport

It looks up the metadata of the dataset specified via its URI or ID
and checks if the retrieved metadata in input ({info}) are
internally coherent. Moreover, if the metadata contains info on
data to be ingested, it also check that the data structure of the
input data are coherent with the schema defined in the metadata
info. It returns an object of type MetadataCheckReport that
contains the results of the checks performed.

DatasetManager API & endpoints

The DatasetManager provides the following functionalities:

	
dataset-mgmt/get-data/{dataset URI o ID}/[{query type}]/[{output data format}]/[{sql query on data}]
=> DatasetData

It retrieves the data of the dataset and allows for options
specifying the data format (i.e. JSON, CSV, etc.) of the output,
the type of query to be performed (i.e. a bulk operation, a sample,
etc.), and a SQL query (other querying languages may be considered
for the future) to perform specific queries on the dataset. There
may be simpler version of this endpoint with predefined options.

{dataset URI o ID} can be either the dataset URI or its
associated ID.

[{query type}] is optional and specifies the type of data
result wanted. For example, bulk will retrieve the entire
dataset (access rights to bulk operation should be carefully set),
sample will retrieve a 5% sample of the entire dataset,
sample10 will retrieve the 10%, sample100R will retrieve
the first 100 rows, etc.

[{output data format}] is an optional field specifying the data
format the output will have, e.g. json, csv, avro, etc.

[{sql query on data}] is optional and allows to specify a SQL
query on the data.

	
dataset-mgmt/feat-jdbc/{enble/disable}/{dataset URI o ID} =>
DsFeatReport

API that enable or disable the feature “Expose a JBDC connector for
the dataset”. It returns an object of type DsFeatReport which
contains info on the operation performed.

{enble/disable} it tells to enable or disable the feature.

	
dataset-mgmt/feat-jdbc/get/{dataset URI o ID} =>
DsFeatJdbcConn

API that returns a DsFeatJdbcConn object (JSON) that contains
info on the JDBC connection exposed by the dataset, if enabled.
{enble/disable} it tells to enable or disable the feature.

IngestionManager API & endpoints

The IngestionManager provides the following functionalities:

	ingestion-mgmt/add-with-info/{DatasetCat} => IngestionReport

It uses the info contained in the object DatasetCat to perform an
ingestion of the data referenced in the field
operational -> input_src. It returns an object (JSON) of type
IngestionReport containing info on the ingestion process performed
and the associated dataset (particularly wrt URI and other calcolated
fields that will be needed to finalize the storing of the metadata in
the catalog). {DatasetCat} is an object containing catalog info
about the dataset to which the incoming data ill be associated.

	ingestion-mgmt/add/{dataset query info}/{input file path} =>
IngestionReport

It uses {dataset query info} to look up for the dataset in the
Catalog. If more than one dataset is found, then an error will be
logged and the ingestion will be terminated.

{dataset query info} it is an object (JSON) with the info to be
used to look up the dataset from the Catalog.

{input file path} the path of the file containing the data to be
ingested. This should normally be placed in the designated entry point
folder of HDFS.

StorageManager API & endpoints

The StorageManager provides the following functionalities:

	TBD

Component/𝜇-Service View

The main components/𝜇-services of the DAF platform are:

	CatalogManager

	IngestionManager

	StorageManager

	DatasetManager

The following image shows these components/𝜇-services and their mutual
relationships.

[image: Component View]
Component View

CatalogManager

The CatalogManager is responsible for the creation, update and
deletion of datasets in DAF. Furthermore, it takes care of the metadata
information associated to a dataset.

The CatalogManager provides a common view and a common set of APIs for
operating on datasets and on all related metadata information and
schemas (see the CatalogManager API &
endpoints).

The CatalogManager is based on the services provided by the
CKAN [https://ckan.org/] service. In fact, one of the most relevant
architectural decisions is to reuse as much as possible the metadata and
catalog features provided by the CKAN service. The idea behind is
simple: treating the data managed by the DAF platform similarly to what
CKAN does with the open data. Part of the metadata are managed by the
CKAN catalog and additional metadata information are managed by the
CatalogManager.

The CatalogManager is also responsible to store all the schemas
associated to the datasets: these schemas are saved as
AVRO [https://avro.apache.org] schemas.

IngestionManager

The IngestionManager manages all the data ingestion activities
associated to datasets.

The IngestionManager collaborates with the CatalogManager to associate
the proper metadata to the ingested data.

The IngestionManager provides an API to ingest data from a datasource
into the DAF platfom (see the IngestionManager API &
endpoints). In particular, the
IngestionManager takes as input data and info needed to identify the
dataset to which the data needs to be associated with. Before actually
storing the data in DAF, the IngestionManager performs a set of
coherence checks between the metadata contained in the catalogue and the
data schema implied in the input data. There are two scenarios:

	The catalog entry for the dataset has been already set up. In this
case the IngestionManager will check if the incoming data and
schemas are congruent with what has been configured in the catalog.

	There is no catalog entry for the dataset. In this case the
IngestionManager will automatically create an entry in the catalog
checking that all the relevant information are provided during the
ingestion phase.

The IngestionManager is also responsible for scheduling the ingestion
tasks based on the information associated to the datasets. The ingestion
for static data (data at rest) is based on a pull model. The dataset
catalog entry should contain information about where and when the data
should be pulled from.

StorageManager

The StorageManager is responsible for abstracting the physical medium
where the data is actually stored (see the StorageManager API &
endpoints).

The StorageManager is based on the Spark dataset abstraction for hiding
the details of the specific storage platform. In fact, Spark provides a
very powerful mechanism for describing a dataset source regardless of
its actual physical place. We leverage this powerful mechanism for
defining the physical URIs as described before, that is:

	dataset:hdfs:// for HDFS,

	dataset:kudu:dbname:tablename for Kudu,

	dataset:hbase:dbname:tablename for Hbase.

The only restriction we have to impose for making this Spark based
mechanism working is to always have a dataset per HDFS directory.

DatasetManager

The DatasetManager manages operations several related to the dataset,
such as:

	to return the data of the dataset (or a sample of it) in a specified
format:

	to create a specific view on top of a dataset,

	to get the dataset schema in a given format (e.g. AVRO);

	to create a new dataset based on an existing one but saved into a
different storage mechanism or based on a transformation of the
existing dataset, etc.

For a list of endpoints and functionalities currently provided by the
DatasetManager see the DatasetManager API &
endpoints.

Technically speaking, the DatasetManager is responsible for all the
tasks on top of the datasets, indicated by the logical
URIs. For example tasks like format conversion, AVRO
to Parquet, dataset import/movement, from HDFS to Kudu will be managed
by this 𝜇-service.

The DatasetManager will interact with the CatalogManager for updating
the information about the dataset is interacting with. For example, a
format conversion means triggering a Spark job that creates first a copy
of the source dataset in the target format. Then the catalog dataset is
updated for taking into account the new dataset format.

The DatasetManager is also responsible for publishing the dataset into a
proper serving layer. For example, a dataset operation could create an
Impala external mapped on the dataset directory sitting on HDFS. This
publishing operation will provide the user with the JDBC/ODBC connection
informations for connecting an external tool to that table.

DAF - Security & Privacy Issues

Data at rest security policies

The default storage platform is HDFS, so once the data has been put on
HDFS must be protected using the proper permissions. Moreover, since the
data need to be accessible through Impala, a set of proper permissions
should be provided to Sentry to open the data to the authorized users.

Regardless the data is accessed either from HDFS or through Impala the
security policies should be the same. That means that the security rules
defined regardless the particular data acces and should be compiled into
prpper permissions rule either on HDFS or Sentry.

Security rules

	Data Ownerhip

Any data set should be owned by an identified principal. Even in case of
an organisation a specific user should be identified as the owner of
that specific dataset.

	Singler User Group

Any user should have a corresponding group named with the same username,
i.e. a user David Greco with a username david should have a group
called david containing only the username david.

This is the default in the POSIX world, in case of an integration with
Active Directory this policy needs to be enforced.

The reason of this rule lies in the fact that Sentry doesn’t allow to
grant a privilege to a user but only to a group. Since, we want to
maintain the single owner principle with to resort to this policy to
maintain our security approach coherent.

	Access Delegation

Only the dataset owner is allowed to provide access to it.

For example, if a dataset D is owned by david, only david
can give read access to D to another user paul.

Implementing this rule means appliying to the dataset HDFS directories
additional HDFS ACLs and to grant specific roles at the Sentry level as
we will show later.

The same rule apply in case a user wants to provide access to a group.
In general the dataset owner can give access to the dataset to a
combination of users and groups.

	Access Rights

The access rights are only two: READ and WRITE, these rights as said
before have to be mapped on proper HDFS ACLs and Sentry roles and
grants.

Security Rules and mapping on HDFS and Sentry

Let’s start with ordinary data first. So, we know that the ordinary data
HDFS layout is defined in the following way:

/daf/ordinary/

The content of this directory is organized adopting the following rules:

sourceOrg/domain/subdomain/datasetName.stage.datasetFormat

where:

	sourceOrg is the name of the organization owning the dataset.
This name is specified as organizationType_organizationName

	domain is the parent category to which the dataset belong (e.g.
“mobility”)

	subdomain is the sub-category to which the dataset belong (e.g.
“traffic”)

	datasetName is the name of the dataset

	stage is the particular stage of the dataset in the
transformation pipeline, ex. landing, stage1

	datasetFormat specifies the serialization format. At the moment
the Allowed format are: csv, json, avro, parquet.

So, let’s suppose that a representative user for sourceOrg is
dataowner then the following rules should be applied to HDFS:

	hdfs dfs -chown -R dataowner:dataowner /daf/ordinary/sourceOrg/domain/subdomain/datasetName.stage.datasetFormat

	hdfs dfs -chmod -R go-rwx /daf/ordinary/sourceOrg/domain/subdomain/datasetName.stage.datasetFormat

	hdfs dfs -setfacl -R -m user:impala:rwx /daf/ordinary/sourceOrg/domain/subdomain/datasetName.stage.datasetFormat

	This fix the ownership to the orgamnisation’s representative user.

	Only the dataset owner has full access to that dataset.

	The impala user need access to all the datasets since Impala doesn’t
support secure impersonation and all the daemons run under the impala
user.

All the directories rooted under /daf/ordinary/sourceOrg should
follow the same rules.

Once the HDFS rules has been applied the next step is to apply a set of
rules at the Sentry side to implement logically the same security rules
we described before:

First of all a proper database should be created to hold the dataset,
the database should be named accordingly with the following naming
convention:

domain__subdomain

in Impala SQL DDL commands:

CREATE DATABASE domain__subdomain

Then an external table should be created pointing to the dataset
directory, something like:

CREATE EXTERNAL TABLE domain__subdomain.dataset_stage_format
(
 ...
)
...
LOCATION '/daf/ordinary/sourceOrg/domain/subdomain/dataset.stage.format';

Then proper Sentry roles and rights should be granted:

This is for the database:

CREATE ROLE db_domain__subdomain_role;
GRANT ALL ON DATABASE domain__subdomain TO ROLE db_domain__subdomain_role;
GRANT ROLE db_domain__subdomain_role TO GROUP dataowner;
INVALIDATE METADATA;

where the dataowner group is actually a group containing only the user
dataowner as dictated by the security rule 2.

Then, this is for the table:

CREATE ROLE table_domain__subdomain__dataset_stage_format_role;
GRANT SELECT ON TABLE domain__subdomain.dataset_stage_format TO ROLE table_domain__subdomain__dataset_stage_format_role;
GRANT ROLE table_domain__subdomain__dataset_stage_format_role TO GROUP dataowner;
INVALIDATE METADATA;

Data at rest

Once data arrives in the landing area, it is stored in HDFS
adopting the rules described in this documentation.

It is worth noting that data is always related to a dataset and it is
converted in AVRO format by-default. Furthermore, a copy of the
unaltered data sent by data-sources is always saved.

On the basis of the settings provided by the dataset owner during the
registration phase, data can be also stored as a Parquet file.

Data organization in HDFS

Data in HDFS is stored adopting the following folder structure. The
forder structure is designed to be as flexible as possible based on the
use cases of each dataset type (Standard and Ordinary).

Since the file format is derivable by the directory name, all files are
stored by using the following naming convention:

YYYYMMDD_HHMMSS

where:

	YYYY stands for four-digit year date

	MM stands for two-digit month date

	DD stands for two-digit day date

	HH stands for two-digit hour date

	MM stands for two-digit minute date

	SS stands for two-digit second date

Standard Dataset Directory Structure

All Standard datasets are stored in the following HDFS directory:

/daf/standard/

The content of this directory is organized following these rules:

domain/subdomain/datasetName.datasetFormat/sourceOrg/

where:

	domain is the parent category to which the dataset belongs (e.g.
“transport”)

	subdomain is the sub-category to which the dataset belongs (e.g.
“traffic”)

	datasetName is the name of the dataset

	datasetFormat specifies the serialization format. At the moment
the allowed formats are: csv, json, avro, parquet.

	sourceOrg is the name of the dataset owner. This name is
specified as organizationType_organizationName.

Ordinary Dataset Directory Structure

All Ordinary datasets are stored in the following HDFS directory:

/daf/ordinary/

The content of this directory is organized following these rules:

sourceOrg/domain/subdomain/datasetName.stage.datasetFormat/

where:

	sourceOrg is the name of the organization owning the dataset.
This name is specified as organizationType_organizationName

	domain is the parent category to which the dataset belongs (e.g.
“transport”)

	subdomain is the sub-category to which the dataset belongs (e.g.
“traffic”)

	datasetName is the name of the dataset

	stage is the particular stage of the dataset in the
transformation pipeline, ex. landing, stage1

	datasetFormat specifies the serialization format. At the moment
the allowed formats are: csv, json, avro, parquet

Data in use

Analysis & Data visualization

One of the key features of DAF is its ability to provide analytical functionalities. It offers
en environment where data scientists and analysts can perform analysis
on data, run statistical & machine learning models and produce data
visualizations and reports. At the time of this writing, the following tools are currently made
available:

	Notebook: DAF creates isolated environments to run notebooks
that can safely connect to data via HDFS or API to perform analysis.
The notebook loads the Catalogue API by default in order to help
dataset search and retrieval, and provides the scala, python, R kernel
integrated with spark.

	BI Tool: DAF comes with an installed BI tool to offer self service
analysis & reporting capabilities to analysts. The BI Tool
typically connects with the dataset that exposes JDBC connections.

… We are currently scouting for good Open Source alternatives.

	Data Visualization Templates & Data Stories: the Data Portal provides users with the ability to create data visualization
on the fly by using Data Visualization Templates. These templates
leverage standard D3.js and alike code embedded into
React/AngularJS modules that connect to a given dataset via the
exposed API and produce a graph. Users can create and share their
analysis via Data Stories, a content entity (blog post) that can contains Data
Visualization instances, text, notebook and Gists/Github resources.

Data Applications

Data applications are an important component of DAF. They are software
applications that leverage/embed analysis and models previously
performed on data to offer functionalities based on those models. As an
example, consider the data scientists team has trained a model that
predicts the traffic jam in a specific point of a road, based on the
current traffic status nearby. This model can be embedded into a
microservice that takes as input the geospatial coordinates where we
want to predict the traffic and returns the prediction.

Data applications are entities modeled in DAF so as to make sure they
are easily manageable, easily searchable and possibly connected/related
to relevant other data applications and datasets. In this perspective,
the data applications will have a catalogue manager similar to the one
for datasets, so to implement data applications metadata and searching
capabilities.

DAF - Data Ingestion

Regardless of the nature of the dataset to be ingested in the platform,
the input dataset get stored into a landing area in HDFS.

Once there, the platform activates the following pipeline:

	it reads all files contained in a configurable folder. Here, data
should be organized into subfolders corresponding to each data owner
(the entity that sends the data into the platform).

	Once the dataset has been read, the module looks for the conversion
schema associated with it. If it is found, the module verifies
if there is an associated standard schema.

	If the standard schema is found, then the module does coherence
checks to make sure that the input schema is made according to the
predefined standard schema.

	Afterwards, the actual dataset is checked with respect to the resulting schema. If all
the checks are positive, then the dataset gets saved into DAF. The saving
methodology depends on the fact that the dataset belongs to the
standard dataset or not.

	In case there is no conversion schema associated with the dataset,
the platform considers it as a ordinary dataset, so it tries to find a
corresponding basic metadata, and if found, it saves the data
accordingly.

Data Publication

The standardized data and the rich collected metadata makes possible to expose data in automatic ways via standard API as soon as
a new dataset gets created in DAF. In particular, at the time of this
writing, we are implementing the following methods:

	Storage Manager: it is made by a set of microservices that
exposed the following basic functionalities for data retrieval:

	{API}/getDataset/{retrieve option}/{output format}/{dataset id, or dataset URI}:
this endpoint is created by default and returns the dataset
identified by either its id or URI.
{retrieve option}: this specifies filters on the data to be
retrieved (e.g. it can be a bulk extraction, it can return only a sample,
ecc.) {output format}: this option specifies the format in which
data is retrieved. The default option is JSON.

	{API}/getDS/{keyword}/{dataset id, or dataset URI}: this is a
simplified version of the previous endpoint that uses specific
configuration of it to simplify the access.

	{API}/searchDS/{search options}/{output options}: this allows users to
search the dataset catalogue to find datasets based on the search
criteria defined in {search options}.

	JDBC Connection: Some dataset can be configured (via the
Catalogue Manager) to expose a JDBC connection, managed either via
Impala or SparkSQL

	HDFS Access via Notebook: data can also be accessed using
Notebook for analysis. Technically, this is done via access to HDFS,
and defined user profiling rules.

Data insights publication

In order to allow the publication of insights arising from data analysis
activities, the platform provides the
Data Portal where users
can access to DAF functionalities and data products. The
Data Portal extends the features typically offered by popular data
catalogues (in Italy dati.gov.it) with the following:

	Data Visualization Templates: they are modules that generate a
specific data visualization based on a specified data source. They
provide users with both already implemented
standard visualizations (e.g., line graph, bar chart, pie chart, etc.)
and custom graphs in d3.js (or any other supported javascript graph
libraries) that can be created by the users themselves and natively integrated with the DAF
API exposing data. Data Visualization Templates are also managed by
their CMSs, in order to help in search and reusability.

	Data Stories: they are entities containing stories and analysis
about a specific phenomena described with data, and can be made of
text, Data Visualization objects, notebooks, gists/github resources.
They are basically the way users create data related content in the
Dataportal.

	Social & Collaboration: Users can create their own Data Stories
and share them on the platform so that other users can read and/or fork
them to build a new Data Story on top of an existing one.

	User Profile: a restricted area where the user can see and manage
the content (s)he created, as well as have access to personal data that
is available in DAF (i.e., the citizen dashboard). In successive releases, the latter
functionality will be accessed with a 2nd/3rd level SPID (the Italian national system for e-ID); meanwhile
for the first releases a lighter registration may be considered sufficient.

Adding a new Dataset

From a user perpective, adding a new
dataset is a rather simple operation: it is
sufficient for the user to successfully complete the registration procedure and use the related available function.

From the DAF perspective, adding a new dataset entails creating a
new instance of the DatasetCatalog, which holds
all metadata information about the dataset as well as the operational information
required for backend operations purposes.

Data can be added synchronously (i.e., data is saved in DAF at the same
time the dataset is created in the
CatalogManager) or at a later
time (with an append operation on an existing dataset).

In the following we describe the ingestion procedure that has been implemented in the presence of a new dataset. For each step of the procedure, we provide details of which microservices are used to perform the required tasks.

Create a new Dataset in the CatalogManager

This is the first step to be performed to create a new dataset. It is a
compound activities that span from receiving metadata information about the
dataset, performing a series of checks on the coherence of the information, and
storing it into the CatalogManager.

Step 1. Send metadata information

Metadata information is sent either via a webform or by directly calling the
catalog-ds/add/{info} API (see the related
doc for more
details on the APIs). This metadata information is then used in the
following steps of the pipeline in order to perform the proper checks on them.

Step 2. Coherence checks

The metadata information is passed to a specific service that is responsible for performing
coherence checks on them. The checks aim at verifying the following
conditions:

	in case the dataset is linked to a standard schema, it checks that
the dataschema and the conversion rules are coherent with respect to
the standard schema;

	in case the insert procedure has also data to be ingested, it checks
that the defined dataschema is coherent with what is inferred from
the data. The coherence check step returns a report object with information
about the performed test.

Step 3. Evaluation of automatically generated fields

The information collected so far in the process is then sent to a module that evaluates the
automatically generated information to be stored into the
CatalogManager, such as the dataset URI, the type of dataset (Standard,
or Ordinary dataset), etc.

Step 4. Save the metadata information in the Catalog Manager

Add Data to the new created Dataset

If the input information contains indication of data to be associated
with the new dataset, then the pipeline of the process continues with the following
steps.

Step 5. Store the data

The dataset URI is enough to store the dataset in the appropriate
HDFS folder and format.

Step 6. Activate services based on the data ingested

Every time new data comes in (either in the case of the creation of a new
dataset, or in the case data is ingested into an existing dataset), the
system activates a list of services. Based on what is defined in
the operational part of the metadata, these services perform operations to enable
services on the dataset or to generate/update analytics information on the dataset. Some
examples of such kinds of services include:

	add the dataset in the Hive metacatalog and expose a JDBC connection
to it

	calculate automatic statistics on the dataset fields

	add an index in ElasticSearch to allow for searching in the content of
the dataset

Dataportal-private

What it is?

The Dataportal-private [https://dataportal-private.daf.teamdigitale.it] is the webapp to access functionalities of DAF, like:

	Ingestion Form to add dataset with metadata

	Business Intelligence with Superset (AirBnB)

	Graphs with Metabase

	Data Science with Jupyter + Sparkmagic

	Ontologies and Controlled Vocabularies repository

Install

Before proceeding with the installation steps, you need to install and run the following external components:

Basic Dependencies

	daf-dataportal-backend [put link to documentation]

	FreeIPA [put link to documentation]

	CatalogManager [put link to documentation]

	SecurityManager [put link to documentation]

Features Enabling Dependencies

	Superset [put link to docker documentation]

	Metabase [put link to docker documentation]

	JupyterHub [put link to docker documentation]

	CKAN [put link to docker documentation]

Installation Steps

First of all, you need to clone the following github repository:

> git clone https://github.com/italia/daf-dataportal

Start in Debug Mode:

> npm install
> npm start

Start with mock server:

> npm run mock

Start in Production Mode:

> npm run build
> npm install -g serve
> serve -s build

Dataportal-public

What it is?

The Dataportal-public [put link] is the webapp to access the open data catalog and other content that can be exposed publicly

Install

Before proceeding with the installation steps, you need to install and run the following external components:

Basic Dependencies

There are no basic dependencies needed.

Features Enabling Dependencies

Connection with DataStories:

	DAF Dataportal Backend [https://github.com/italia/daf-dataportal-backend]

Installation Steps

First of all, clone the following github repository:

> $ git clone https://github.com/italia/daf-dataportal-backend

Start in Debug Mode:

> npm install
> npm start

Start with mock server:

> npm run mock

Start in Production Mode:

> npm run build
> npm install -g serve
> serve -s build

Dataportal

The Dataportal is the user interface of the DAF, and add additional functionalities to the big data infrastructure, such as: a dataset catalog, content management system, business intelligence tools, an interactive notebook to perform data analysis and much more. It is made of two components: a public webapp (Dataportal-public) to serve public content, and a private one (Dataportal-private) to access analytics tools and other content creation services.

For installation instructions, please refer to the following sections.

	 Dataportal-public

	 Dataportal-private

Dataportal

The Dataportal is the user interface of the DAF, and add additional functionalities to the big data infrastructure, such as: a dataset catalog, content management system, business intelligence tools, an interactive notebook to perform data analysis and much more. It is made of two components: a public webapp (Dataportal-public) to serve public content, and a private one (Dataportal-private) to access analytics tools and other content creation services.

For installation instructions, please refer to the following sections.

	 Dataportal-public

	 Dataportal-private

Docker recipies of open source tools used in DAF

Contents:

	 Install step-by-step

	 Ckan
	Account Management Dependency

	Ckan docker compose

	 Freeipa
	Docker

	References

	 Jupyter
	Account Management Dependency

	JupyterHub

	 LDAP
	FreeIpa Instance

	 Metabase

	 Superset

Install

This installation is tested on Ubuntu. The main reason is the difficulties to
launch freeipa docker on mac and windows (Any help making official freeipa docker
working on these platforms will be very usefull). For users with mac and windows
that want to test the application faster I suggest to install freeipa in some cloud
provider with a public ip and ldap ports opened.

For angry users it is possible to install directly this virtul box images (wo)

These are a series of docker recipes that are used in daf-dataportal for giving tools and
instruments for analyzing and visualizing data.

In not necessary to install all dockers in order but is important to install freeipa as
first docker because is an identity manager system which all dockers connect to have access.

	Install freeipa following the instructions in freeipa section.

	Install ckan following the instructions in ckan section.

	Install superset following the instructions in superset section.

	Install metabase following the instructions in metabase section.

	Install jupyter (working progress)

List of microservices

The DAF Big Data platform is developed by adopting a Micro-service Architecture pattern [http://microservices.io/patterns/microservices.html].
This is the list of the developed microservices:

	Core microservices
	 Catalog Manager

	 Dataset Manager

	 Ingestion Manager

	 Storage Manager

	 Security Manager

	Dataportal microservices
	 Front-end manager

	Semantic microservices
	 OntoNetHub

	 Semantic Manager

	 Semantic Repository

	 Semantic Validator

Core microservices

Content:

	 Catalog Manager

	 Dataset Manager

	 Ingestion Manager

	 Storage Manager

	 Security Manager

Dataportal microservices

Content:

	 Front-end manager

List of microservices

The DAF Big Data platform is developed by adopting a Micro-service Architecture pattern [http://microservices.io/patterns/microservices.html].
This is the list of the developed microservices:

	Core microservices
	 Catalog Manager

	 Dataset Manager

	 Ingestion Manager

	 Storage Manager

	 Security Manager

	Dataportal microservices
	 Front-end manager

	Semantic microservices
	 Ontonethub

	 Semantic Manager

	 Semantic Repository

	 Semantic Validator

Catalog Manager

Catalog Manager is the microservices responsible to store and retrieve metadata associated to datasets stored in Daf [https://github.com/italia/daf/].
It uses a docker compose ckan [https://github.com/lorenzoeusepi77/ckanlast] based storage layer as backend. It is developed following the OpenApi specification [https://github.com/OAI/OpenAPI-Specification]
and contract first design pattern. Every microservice can run as a standalone module using mock data. Not all endpoint can retrieve mock data but all endpoints are described using https://swagger.io/ at localhost:9000/catalog-manager

See here for more details.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../catalog_manager

	sbt

	run

	connect to http://localhost:9000/catalog-manager

You should see a swagger ui with all endpoints described.
Nevertheless, the authorization is not required by the UI you should pass at least a Basic authorization token made by an equal username and password.

To test the endpoints we suggest to use a tool like Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

[TBD]

Dataset Manager

The DatasetManager manages operations several related to the dataset, such as:

	to return the data of the dataset (or a sample of it) in a specified format:

	to create a specific view on top of a dataset,

	to get the dataset schema in a given format (e.g. AVRO);

	to create a new dataset based on an existing one but saved into a different storage mechanism or based on a transformation of the existing dataset, etc.

See here for more details.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../dataset_manager

	sbt

	run

	connect to http://localhost:9000/dataset-manager

You should see a swagger ui with all endpoints described.
Nevertheless, the authorization is not required by the UI you should pass at least a Basic authorization token made by an equal username and password.

To test the endpoints we suggest to use a tool like Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

[TBD]

Core microservices

Content:

	 Catalog Manager

	 Dataset Manager

	 Ingestion Manager

	 Storage Manager

	 Security Manager

Ingestion Manager

The IngestionManager manages all the data ingestion activities
associated to datasets. The IngestionManager provides an API to ingest data from a datasource
into the DAF platfom

See here for more details.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../ingestion_manager

	sbt

	run

	connect to http://localhost:9000/ingestion-manager

You should see a swagger ui with all endpoints described.
Nevertheless, the authorization is not required by the UI you should pass at least a Basic authorization token made by an equal username and password.

To test the endpoints we suggest to use a tool like Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

[TBD]

Security Manager

Security Manager is the microservices responsible to manage security of the web application and the REST API developed within DAF.
Its APIs verifies user credential, produces JWT tokens needed to access DAF services and handles the SSO on the solutions integrated in the Data Portal.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../security_manager

	sbt

	run

	connect to http://localhost:9000/security-manager

You should see a swagger ui with all endpoints described.
Nevertheless, the authorization is not required by the UI you should pass at least a Basic authorization token made by an equal username and password.

To test the endpoints we suggest to use a tool like Postman [https://www.getpostman.com/]

DAF integration note

[TBD]

Endpoints

[TBD]

Storage Manager

The StorageManager is responsible for abstracting the physical medium
where the data is actually stored.

See here for more details.

Local installation

	git clone https://github.com/italia/daf

	cd daf/common

	sbt publishLocal

	cd ../daf/storage_manager

	sbt

	run

	connect to http://localhost:9000/storage-manager

DAF integration note

[TBD]

Endpoints

[TBD]

Frontend Manager

What is?

The Frontend Manager is the layer that serves functionalities to the frontend web applications (Dataportal-public and Dataportal-private). It integrates external applications (e.g. CKAN) and exposes REST API to the web apps.

It has been developed using the following technologies:

	playframework 2.5.12

	scala 2.11.8

	sbt 0.13

	Zalando’s api-first-hand

Install

	$ git clone git@github.com:italia/dati-frontendserver.git

	$ sbt compile

	$ sbt run

	Connect to http://localhost:9000

Setup

…

Dataportal microservices

Content:

	 Front-end manager

Semantic microservices

The semantic part of the DAF consists of the following microservices:

	 Ontonethub

	 Semantic Manager

	 Semantic Repository

	 Semantic Validator

OntoNetHub

OntoNetHub is a microservice meant to deal with the management of ontology networks.
This includes the upload, deletion, storage, and indexing of an ontology part of a network.

OntoNetHub is designed as an extension of Apache Stanbol and released as a Docker component. Hence, users need Docker to build and run OntoNetHub.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/teamdigitale/ontonethub

	docker-compose build

	docker-compose up

	connect to http://localhost:8000/stanbol/ontonethub

To test the endpoints it’s possible to use a tool similar to Postman [https://www.getpostman.com/]

DAF integration note

This microservice currently provides functionalities to the Semantic Manager, which takes care of integrating them into the DAF and the public dataportal:

	with the ingestion form of DAF, providing suggestions for the “semantic” annotations of dataset fields.

	with the public dataportal, providing a list of available ontologies and “core” vocabularies.

Endpoints

There is a list of available endpoints:

	/stanbol/ontonethub/ontology : can be used to add a new ontology using a POST request.

	/stanbol/jobs/{job_id} : provides informations about the status of a job associated with the upload of an ontology.

	/stanbol/ontonethub/ontology/{ontology_id} : can be used with a GET request to access the information about the specific ontology.

	/stanbol/ontonethub/ontology/{ontology_id} : can be used with a DELETE request for deleting an existing ontology.

	/stanbol/ontonethub/ontology/{ontology_id}/source : can be used with a GET request for obtaining a representation of the ontology in JSON-LD.

	/stanbol/ontonethub/ontologies/find : can be used for querying the OntoNetHub and retrieving OWL entities from the ontologies managed by it.

Detailed information about the service can be found here [https://github.com/teamdigitale/ontonethub].

Semantic Manager

Semantic Manager is the microservice designed to provide a central access point for the so-called “semantic” functionalities,
involving the usage of ontologies and core vocabularies supporting both DAF processes and the catalog front-end for users.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf-semantics

	cd daf-semantics/semantic_manager

	sbt docker:publishLocal

	sbt run

	connect to http://localhost:9000

You should see a swagger UI with all endpoints described.

To test the endpoints I suggest to use a tool similar to Postman [https://www.getpostman.com/]

DAF integration note

This microservice is currently integrated:

	with the ingestion form of DAF, providing suggestions for the “semantic” annotations of dataset fields. Those annotations are saved into the schema for the imported dataset, and act as references for the standardization of fields.

	with the public dataportal, providing a list of available ontologies and “core” vocabularies.

Endpoints

There are two endpoints:

	/kb/v1/ontologies : provides a list of the available ontologies

	/kb/v1/ontologies/properties/find : enables searching by terms and language for properties which may be used for a simple annotation of dataset fields in the ingestion form (and later for standardization).

Detailed information about the service can be found here [https://github.com/italia/daf-semantics/tree/master/semantic_manager].

Semantic Repository

Semantic Repository is the microservice designed to provide basic functionalities for managing ontologies/vocabularies
(and data, in the future) using the well-know [RDF4J](http://rdf4j.org/) interface as an abstraction over triplestores.

The idea is to have a list of core functionalities for a catalog service of queryable ontologies, which can be implemented over an external triplestore, and it will evolve accordingly.

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf-repository

	cd daf-semantics/semantic_repository

	sbt docker:publishLocal

	sbt run

	connect to http://localhost:9000

You should see a swagger UI with all endpoints described.

To test the endpoints I suggest to use a tool similar to Postman [https://www.getpostman.com/].

DAF integration note

[TBD]

Endpoints

There is a list of basic endpoints:

	/kb/v1/ontologies : using this endpoint, it is possible to add new ontologies using HTTP POST with parameters. By conventions the user should assign a prefix / context pair (which willbe unique in the underlying repository catalog).

	/kb/v1/ontologies/remove : the endpoint is dedicated to remove an existing ontology, using the context where it was published.

	/kb/v1/contexts : a list of the existing context can e retrieved: by convention ontologies are published on assigned contexts, which will be different from the ones used for data.

	/kb/v1/prefixes : this endpoint returns the full list of used prefix / namespace pairs, where the namespace usually coincide with an assigned contexts on the underlying repository.

	/kb/v1/prefixes/lookup : this endpoint can be used for retrieving the namespace associated to a given prefix.

	/kb/v1/prefixes/reverse : this endpoint can be used for retrieving the prefix associated to a given namespace.

	/kb/v1/triples : provides the amount of available triples.

	/kb/v1/triples/{prefix} : provides the triples count for a given context.

Detailed information about the service can be found here [https://github.com/italia/daf-semantics/tree/master/semantic_repository].

Semantic Validator

Semantic Validator is the microservice designed to provide a simple way for validating RDF metadata dataset against a specific Ontology on an underlying triplestore.
The validator is currently based on a set of queries (about 150 for DCAT-AP_IT) returning a record of information for the rules broken by the dataset. The most important infos are:

	Class name: the class involved in the rule (ex: Organization for DCAT-AP_IT)

	Rule ID: the broken rule id (ex: 207 for DCAT-AP_IT)

	Error description: the problem description (ex: “vcard:hasURL should be a resource” for DCAT-AP_IT)

Local Installation

	Pre-requisites: JDK 8, SBT, GIT client

	git clone https://github.com/italia/daf-semantics

	cd daf-semantics/semantic_validator

	sbt docker:publishLocal

	sbt run

	connect to http://localhost:9000

You should see a swagger UI with all endpoints described.

To test the endpoints I suggest to use a tool similar to Postman [https://www.getpostman.com/].

DAF integration note

This microservice will be integrated with the front-end component “semantic_frontend” in the block called “Public Manager” as you can see in the DAF architecture main schema.

Endpoints

There are two endpoints:

	/validator/validate : in order to validate a document

	/validator/validators : in oder to the list of available validators

Detailed information about the service can be found here [https://github.com/italia/daf-semantics/tree/master/semantic_validator].

Core concepts

To introduce the philosophy behind the DAF we have to explain the following core concepts:

	Dataset - the DAF platform revolves around the
concept of dataset. In fact, all data stored in the DAF are organized
into logical entities called dataset: as a consequence, it is crucial
to understand how the concept of dataset is modelled in the DAF
platform.

	Metadata & Schemas - to describe the
content and the structure of a dataset, the DAF platform specifies a
minimum set of metadata, and additional metadata useful to homogenize
the format of data collected from various datasources.

—

Table of contents:

	Dataset Concept
	Dataset lifecycle

	Types of datasets

	Metadata & Schemas
	Standard Schema

	Conversion Schema

Metadata & Schemas

Dataset is the main concept of DAF. Two types of datasets exist, each having different required sets of rules and information, more stringent for standard datasets, less for ordinary datasets.

Several metadata can be used to describe a dataset. Some metadata are
useful to implement search/discovery mechanisms, others provide
operational information.

Generally speaking, metadata are categorized in three macro groups:

	DCAT-AP(_IT): this kind of metadata defines a standard way to specify descriptive information of the datasets. It defines metadata about theme, geographic location, who
produced the dataset, who is responsible of the dataset, title and description of the dataset, and so on. DCAT-AP_IT is the Italian extension of the European metadata profile DCAT-AP Data Catalogue Application
Profile [https://joinup.ec.europa.eu/asset/dcat_application_profile/description]. You can find the metadata schema DCAT-AP(_IT) in JSON here [https://github.com/lilloraffa/daf-project/blob/master/datamgmt/metadata/md-dcatapit.json] and an example application; [https://github.com/lilloraffa/daf-project/blob/master/datamgmt/metadata/example/data-dcatapit.json]

	DataSchema: this type of metadata involves the data content. This metadata is about features and the associated
type, optional constraints on the values that the features can take,
as well as semantic information, optional theme and categories of
each features.
You can find the DataSchema schema here [https://github.com/lilloraffa/daf-project/blob/master/datamgmt/metadata/md-dataschema.json] and an example application; [https://github.com/lilloraffa/daf-project/blob/master/datamgmt/metadata/example/data-dataschema.json]

	Operational: this type of metadata is related to the operational back-end, such as
dataset URI, physical storage URL, standard schema conversion,
transformation pipeline, associated API for retrieval and ingestion,
etc.
You can find the Operational schema here [https://github.com/lilloraffa/daf-project/blob/master/datamgmt/metadata/md-operational.json] and an example application here [https://github.com/lilloraffa/daf-project/blob/master/datamgmt/metadata/example/data-operational.json]

In addition to the metadata types previously identified, the Big Data platform relies on the concept of standard schema, which is described below.

Standard Schema

A standard schema defines a standard dataset.

A standard schema declares the existence in the DAF of a specific standard dataset
and contains a set of information describing its structure and content.

More precisely, a standard schema defines all the rules and details that
a data source must oblige to if it wants to belong to a specific
standard dataset.

Thus, the standard schema includes the following information:

	specific information on the dataset that is not foreseen in DCAT-AP(_IT) metadata profile;

	the list of required fields, with information, among the other, about their format, constraints if any, nature (e.g. measure or a dimension), domain specific information that will help the programmatic use of the data in specific contexts;

	the list of optional fields, with the same information listed for the required ones;

	the associated DCAT-AP(_IT) metadata id;

	information about where the data set is stored and how;

	information about the owner of the data and the group (list of users) that has the rights to access the data.

… You can find the metadata of the standard schema
here [https://github.com/lilloraffa/daf-datamgmt/blob/master/dataschema/schema-prototype.json],
and a Standard Schema example
here [https://github.com/lilloraffa/daf-datamgmt/blob/master/dataschema/mobility/shema-gtfs_fare_attributes.json].

For example, let’s imagine we want to build a standard dataset describing the phenomena “Bike Sharing” and let’s suppose that we have multiple data sources each of which collecting bike sharing data for a specific geographic area (e.g. a town).
In order to be eligible to insert data into the “Bike Sharing” standard dataset, each data source must provide data following the rules defined in the related standard schema provided by the DAF owner. The resulting dataset will then be able to describe a unique phenomena in a consistent way across multiple data sources.
The data sources have two options at disposal: providing (i) either data following exactly the same schema defined in the standard schema, (ii) or the minimum set of required information along with a set of conversion information with which the platform will be able to convert the original schema to the standard one. In both cases, the platform makes use of a conversion schema that is described in the following.

Conversion Schema

The Conversion schema is used to ingest both ordinary and standard datasets.

Every dataset in input needs to be associated with a conversion schema.

A conversion schema has a twofold purpose:

	to provide basic information describing the dataset stored in the
platform, at least at the level of ordinary dataset;

	with respect to ordinary datasets, providing rules to map the related
data schema to the standard schema.

The Conversion schema contains the following information:

	specific information on the dataset that is not foreseen in DCAT-AP(_IT) metadata profile;

	the reference to the associated standard schema in case the conversion
schema is used to map the incoming dataset structure to a standard
one. In this case, a list that maps each input field to the standard
schema is provided.

	the list of the so-called custom fields with the same information and
structure of the required/optional fields described in the standard schema. This list has different purposes if the
conversion schema is used to map to a standard one, or whether it is used to
ingest an ordinary dataset. In the first case, the list contains
fields that are not part of the standard schema, but they are still
provided by the data source. In the case of ordinary dataset ingestion, it
contains the full list of fields that describe the dataset itself.

… You can find the metadata of the Conversion Schema
here [https://github.com/lilloraffa/daf-datamgmt/blob/master/dataschema/conv-prototype.json],
and a Conversion Schema example
here [https://github.com/lilloraffa/daf-datamgmt/blob/master/dataschema/mobility/examples_conv/it_palermo/conv-gtfs_fare_rules.json].

 _images/daf_arch_logical_view1.png
Ingestion
Layer

=

-

y-Service Layer

Hadoop Storage Layer

_images/jupyter.png
< C | @ localhost:8000/hubflogin

Z Jupyter

Warning: JupyterHub seems to be served
over an unsecured HTTP connection. We
strongly recommend enabling HTTPS for
JupyterHub.

Username:
alice

Password:

_images/daf_arch_deployment_view_ims1.png

_images/daf_arch_logical_view.png
Ingestion
Layer

=

-

y-Service Layer

Hadoop Storage Layer

_images/uris.png
LogicalURI

PhysicalURI

ViewURI

_images/uris1.png
LogicalURI

PhysicalURI

ViewURI

_images/ldap_login.png
sphp
=LDAP =)
sadmin 29 ¥Q@

Home | Purge caches | Show Cache

"
L ";ap thenticate to server Idap
login

Warning:.This.weh.connection.is.unencrypted.

Login DN:

Password:

Anonymous [|

Authenticate

_images/ldap_tree.png
A

81dap O

cn=alice

=] ®oWmeadqa Servestdap Distinguihes Name: cralics cn=jupytachub, dc=example de=org

Schems searen refresh info imort export lagout
Logges n a5 camadmin

=9 de-example, dc-org (2) # Refresh
goain & Switch Template
=8 cn=jupyterhub (1) & Copy or move this entry
R cn=zlice [Rename
% Create new entry here Create a child entry
4 Create new entry here 7 Hint: To delete an attrbute, empty the text field and click save.

2 Hint: To view the schema for an attribute, click the attribute name.

alice
(ac value)
Gerame)
gidNumber
500
sopyterndb O
givenName
alice
(ac value)
homeDirectory
Ihomefusersfalice
objectClass.
O inetorgPerson
© [posixaccount
0 op
(ac value)
Password

Terpi: Detuit

K show internal attributes.
St

@ Delete this entry

Q Compare with another entry
[Add new attribute

P

(smel)

27¥0@

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Data & Analytics Framework (DAF) - Developer Documentation

 		
 Overview

 		
 Dataset concept

 		
 Dataset lifecycle

 		
 Types of datasets

 		
 Interoperability, Standardization and Semantic

 		
 Metadata, Semantic Tagging and Controlled Vocabularies

 		
 End-user features: Dataportal & API

 		
 Dataportal

 		
 API

 		
 How DAF helps Open Data

 		
 Data Management

 		
 Dataset: a deep dive

 		
 Ordinary Dataset

 		
 Standard Datasets

 		
 Raw Open Data

 		
 Metadata, MetaCatalog & Catalog Manager

 		
 Dataset level metadata (DCATAP_IT)

 		
 Data structure level metadata

 		
 Conventions & Ingestion pipeline

 		
 DAF Conventions List

 		
 Ingestion pipeline steps

 		
 Final Dataset Structure

 		
 Storage engines

 		
 Security & Permission

 		
 Architecture

 		
 Logical Architecture

 		
 Logical View

 		
 Component/microservice View

 		
 Deployment View

 		
 Security & Privacy issues

 		
 Data at rest security policies

 		
 Installation

 		
 Local Installation

 		
 Virtual Machine Account

 		
 Docker image

 		
 Configuration

 		
 Services

 		
 CatalogManager

 		
 Local Installation

 		
 DAF integration note

 		
 Endpoints

 		
 IngestionManager

 		
 Local Installation

 		
 DAF integration note

 		
 Endpoints

 		
 SecurityManager

 		
 Local Installation

 		
 DAF integration note

 		
 Endpoints

 		
 DatasetManager

 		
 Local Installation

 		
 DAF integration note

 		
 Endpoints

 		
 StorageManager

 		
 Local installation

 		
 DAF integration note

 		
 Endpoints

 		
 FrontendManager

 		
 What is it?

 		
 Install

 		
 Setup

 		
 Dataportal-public

 		
 What is it?

 		
 Install

 		
 Dataportal-private

 		
 What is it?

 		
 Install

 		
 Semantics

 		
 OntoNetHub

 		
 Semantic Manager

 		
 Semantic Repository

 		
 Semantic Validator

 		
 FreeIpa Docker

 		
 Docker

 		
 References

 		
 LDAP Docker

 		
 FreeIpa Instance

 		
 CKAN Docker

 		
 Account Management Dependency

 		
 Ckan docker compose

 		
 Superset Docker

 		
 Metabase Docker

 		
 JupyterHub Docker

 		
 Account Management Dependency

 		
 JupyterHub

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_images/daf_arch_deployment_view.png

_images/daf_arch_deployment_view1.png

_images/daf_arch_component_view.png
CKAN

L)

CatalogManager
i A

. N
N
N
DatasetManager IngestionManager
N i
N .

. ’

N
N StorageManager

_images/daf_arch_component_view1.png
CKAN

L)

CatalogManager
i A

. N
N
N
DatasetManager IngestionManager
N i
N .

. ’

N
N StorageManager

_images/daf_arch_deployment_view_ims.png

_images/bob_page.png
@ localhost:5000/dashboard?id=bob. T Qn

}’ cka n Datasets Organizations Groups About

A / Dashboard
Newsfeed & MyDatasets [My Organizations & My Groups # Edit settings
News feed Activity from items that I'm following Activity from: Everything v

o @ bob signed up Just now

_images/ckan_login.png
localhost:5000/user/login

m cka n Datasets Organizations

A / Login

Need an Account?

Then sign right up, it only Logln
takes a minute.

Username: bob
Create an Account

Password: | ssseess
Forgotten your password?

¥ Remember me
No problem, use our §

password recovery form to
reset it.

Forgot your password?

Groups

_images/architecture.jpg
Metabase
Postgres
Mongo

KONG API Gateway

Ckan
Postgres
Mongo
Redis

Porres || Safana | | Suehun
SparkMagic

